

Уравнения математической физики: Сборник примеров и упражнений / Сост. А.А. Рогов, Е.Е. Семенова, В.И. Чернецкий, Л.В. Щеголева. — Петрозаводск: Изд-во ПетрГУ, 2001.

Занятие № 13

24.04.2023

Занятие № 12. Краевые задачи для уравнения теплопроводности на прямой. Интеграл Пуассона

Задача Коши для уравнения теплопроводности на прямой:

$$u_t = a^2 u_{xx} + f(x,t), |x| < +\infty, t > 0,$$

 $u(x,0) = \varphi(x), |x| < +\infty,$
(1)

имеет решение, представимое с помощью интеграла Пуассона:

$$u(x,t) = \int_{-\infty}^{+\infty} \varphi(\xi)G(x,\xi,t)d\xi + \int_{0-\infty}^{t} \int_{-\infty}^{+\infty} f(\xi,\tau)G(x,\xi,t-\tau)d\xi d\tau,$$
 (2)

где функция

$$G(x,\xi,t) = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{(x-\xi)^2}{4a^2t}}$$
 (3)

является **фундаментальным решением** уравнения теплопроводности на прямой (функция Грина).

Заметим, что
$$\int_{-\infty}^{+\infty} G(x,\xi,t)d\xi = 1.$$
 (4)

Задача 1

Построить решение краевой задачи для уравнения теплопроводности на прямой (задача Коши):

$$u_{t} = 4u_{xx} + 8u_{x} + 3u + e^{-x}(1 + te^{-t}), |x| < +\infty, t > 0,$$

$$u(x,0) = 2e^{-x}, |x| < +\infty.$$
(1.1)

Решение.

1. Приведение краевой задачи к виду (1). Будем искать решение краевой задачи (1.1) в виде:

$$u(x,t) = e^{\alpha x + \beta t} v(x,t),$$

определив коэффициенты α и β так, чтобы уравнение которому должна удовлетворять функция $v(x,\ t)$, не содержало самой функции v и ее производной v_x .

√ Для определения коэффициентов все слагаемые из правой части уравнения задачи (1.1) перенесем в левую часть. Так как

$$-3 \quad u(x,t) = e^{\alpha x + \beta t} v(x,t),$$

$$-8 \quad u_x = e^{\alpha x + \beta t} (\alpha v + v_x),$$

$$1 \quad u_t = e^{\alpha x + \beta t} (\beta v + v_t),$$

$$-4 \quad u_{xx} = e^{\alpha x + \beta t} (\alpha^2 v + 2\alpha v_x + v_{xx}),$$

то функция v(x, t) и ее производная v_x входят в уравнение с такими коэффициентами:

$$v = e^{\alpha x + \beta t} (-3 - 8\alpha + \beta - 4\alpha^{2})$$

$$v_{x} = e^{\alpha x + \beta t} (-8 - 8\alpha)$$

$$v_{t} = e^{\alpha x + \beta t} \cdot 1$$

$$v_{xx} = -4e^{\alpha x + \beta t}$$

Тогда, выбрав α и β так, чтобы

$$\begin{cases} -8 - 8\alpha = 0, \\ -3 - 8\alpha + \beta - 4\alpha^2 = 0 \end{cases} \Rightarrow \begin{cases} \alpha = -1, \\ \beta = -1, \end{cases}$$

получим уравнение, которому должна удовлетворять функция v(x, t):

$$v_{tt} = 4v_{xx} + t + e^t. {(1.2)}$$

А для функции u(x,t) будем иметь

$$u(x,t) = e^{-x-t}v(x,t).$$
 (1.3)

Подставляя выражение (1.3) в начальное условие задачи (1.1), получим начальное условие для функции v(x,t):

$$v(x,0) = 2, \quad |x| < +\infty.$$
 (1.4)

2. Построение решения краевой задачи (1.2),(1.4) с помощью формулы (2), учитывая свойство функции Грина (4):

$$v(x,t) = \int_{-\infty}^{+\infty} 2 \cdot G(x,\xi,t) d\xi + \int_{0}^{t} \int_{-\infty}^{+\infty} (\tau + e^{\tau}) G(x,\xi,t-\tau) d\xi d\tau =$$

$$= 2 \int_{-\infty}^{+\infty} G(x,\xi,t) d\xi + \int_{0}^{t} (\tau + e^{\tau}) \int_{-\infty}^{+\infty} G(x,\xi,t-\tau) d\xi d\tau =$$

$$= 2 + \int_{0}^{t} (\tau + e^{\tau}) d\tau = 1 + \frac{t^{2}}{2} + e^{t}.$$

Ответ: $u(x,t) = \left(1 + e^t + \frac{t^2}{2}\right)e^{-x-t}$.

Задача 2

Решить задачу Коши:

$$u_t = u_{xx} + e^{-t}, \quad |x| < +\infty, \quad t > 0,$$

 $u(x,0) = \cos x, \quad |x| < +\infty.$ (2.1)

Зачастую вычисления, связанные с интегралом Пуассона, являются громоздкими. Для широкого класса функций f(x,t) и $\varphi(x)$ можно применить **метод частных решений**. Для этого заметим, что оператор теплопроводности $Lu=u_t-a^2u_{xx}$ переводит (отображает), например, функции вида $g(t)\sin\lambda x$ и $g(t)\cos\lambda x$ в функции того же вида $h(t)\sin\lambda x$ и $h(t)\cos\lambda x$ соответственно.

Разобъем задачу (2.1) на две:

1)
$$v_t = v_{xx} + e^{-t}$$
, $|x| < +\infty$, $t > 0$, $v(x,0) = 0$, $|x| < +\infty$, (2.2)

2)
$$w_t = w_{xx}$$
, $|x| < +\infty$, $t > 0$, $w(x, 0) = \cos x$, $|x| < +\infty$. (2.3)

Решение первой задачи (2.2) найдем с помощью формулы Пуассона (2):

$$v(x,t) = \int_{0-\infty}^{t+\infty} e^{-\tau} G(x,\xi,t-\tau) d\xi d\tau = \int_{0}^{t} e^{-\tau} d\tau = 1 - e^{-t}.$$

Решение второй задачи (2.3) будем искать в виде $w(x,t) = g(t)\cos x$, где функция g(t) подлежит определению. Подставляя это выражение в уравнение и начальное условие задачи (2.3), будем иметь

$$g'(t)\cos x = -g(t)\cos x$$
, $g(0)\cos x = \cos x$.

Отсюда получаем задачу Коши

$$\begin{cases} g'(t) = -g(t), \\ g(0) = 1. \end{cases}$$

Ее решением является функция $g(t)=e^{-t}$. Следовательно, $w(x,t)=e^{-t}\cos x$. Суммируя решения задач (2.2) и (2.3), получим решение задачи (2.1):

$$u(x,t) = v(x,t) + w(x,t) = 1 - e^{-t} + e^{-t} \cos x.$$

Задача З

Решить задачу Коши:

$$u_t = u_{xx} + e^{-t} \sin 2x, \quad |x| < +\infty, \quad t > 0,$$

 $u(x,0) = \cos x, \quad |x| < +\infty.$ (3.1)

Решение можно построить, разбив задачу (3.1) на две:

1)
$$v_t = v_{xx} + e^{-t} \sin 2x$$
, $|x| < +\infty$, $t > 0$, $v(x,0) = 0$, $|x| < +\infty$. (3.2)

2)
$$w_t = w_{xx}$$
, $|x| < +\infty$, $t > 0$,
 $w(x,0) = \cos x$, $|x| < +\infty$. (3.3)

Тогда решение задачи (3.1) найдем в виде суммы:

$$u(x,t) = v(x,t) + w(x,t).$$
 (3.4)

Обе задачи (3.2) и (3.3) можно решить, применив метод частных решений. Решение первой задачи ищем в виде $v(x,t) = h(t)\sin 2x$, а второй – $w(x,t) = g(t)\cos x$.

Покажите, что функции $\,g(t)\,$ и $\,h(t)\,$ являются решениями следующих задач Коши:

$$\begin{cases} h'(t) = -4h(t) + e^{-t}, \\ h(0) = 0, \end{cases} \quad \text{if} \quad \begin{cases} g'(t) = -g(t), \\ g(0) = 1, \end{cases}$$

соответственно. Найдите их решения.

Ответ:
$$u(x,t) = \frac{1}{3}(e^{-t} - e^{-4t})\sin 2x + e^{-t}\cos x$$
.

Домашнее задание

1. Решить задачу Коши:

$$u_t = 4u_{xx} + \sin t \cdot \cos x, \qquad |x| < +\infty, \quad t > 0,$$

$$u(x,0) = \cos x + \sin x, \quad |x| < +\infty.$$

2. C. 174, № 72(2)

11.05.2023

Занятие № 13. Свойства интеграла Пуассона

Свойство 1. Пусть функция $\Phi(x)$ определена, ограничена на прямой $(-\infty < x < +\infty)$ и имеет на ней ограниченную производную, а линейная комбинация $\alpha\Phi'(x) - \beta\Phi(x)$ является нечетной относительно точки x=0. Докажите, что функция u(x,t), определяемая интегралом Пуассона:

$$u(x,t) = \int_{-\infty}^{+\infty} \Phi(\xi)G(x,\xi,t)d\xi,$$
 (1)

где

$$G(x,\xi,t) = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{(x-\xi)^2}{4a^2t}},$$
 (2)

удовлетворяет условию:

$$\left(\alpha u_x(x,t) - \beta u(x,t)\right)\Big|_{x=0} = 0.$$

Доказательство. Прежде всего заметим, что для функции $G(x,\xi,t)$ справедливо следующее:

$$\frac{\partial G}{\partial x} = -\frac{\partial G}{\partial \xi}$$
 и $G(x, \xi, t) \xrightarrow{|\xi| \to \infty} 0$.

В силу наложенных на $\Phi(x)$ условий функцию (1) можно дифференцировать по x под знаком интеграла. Поэтому

$$\alpha u_{x}(x,t) - \beta u(x,t) = \alpha \int_{-\infty}^{+\infty} G_{x}(x,\xi,t) \Phi(\xi) d\xi - \beta \int_{-\infty}^{+\infty} G(x,\xi,t) \Phi(\xi) d\xi =$$

$$= -\alpha \int_{-\infty}^{+\infty} G_{\xi}(x,\xi,t) \Phi(\xi) d\xi - \beta \int_{-\infty}^{+\infty} G(x,\xi,t) \Phi(\xi) d\xi.$$

Применив к первому интегралу привило интегрирования по частям, получим

$$\int_{-\infty}^{+\infty} G_{\xi}(x,\xi,t) \Phi(\xi) d\xi = G(x,\xi,t) \Phi(\xi) \Big|_{\xi=-\infty}^{\xi=+\infty} - \int_{-\infty}^{+\infty} G(x,\xi,t) \Phi'(\xi) d\xi =$$

$$= -\int_{-\infty}^{+\infty} G(x,\xi,t) \Phi'(\xi) d\xi.$$

Внеинтегральные слагаемые при $\xi \to \pm \infty$ обращаются в ноль в силу ограниченности $\Phi(x)$ и свойства функции $G(x,\xi,t)$.

В результате получаем

$$\begin{split} \alpha u_x(x,t) - \beta u(x,t) &= \alpha \int\limits_{-\infty}^{+\infty} G(x,\xi,t) \Phi'(\xi) d\xi - \beta \int\limits_{-\infty}^{+\infty} G(x,\xi,t) \Phi(\xi) d\xi = \\ &= \int\limits_{-\infty}^{+\infty} G(x,\xi,t) (\alpha \Phi'(\xi) - \beta \Phi(\xi)) d\xi. \end{split}$$

Так как подынтегральная функция при x = 0 является нечетной, то интеграл при x = 0 на симметричном промежутке равен 0, т. е. будем иметь:

$$\left(\alpha u_x(x,t) - \beta u(x,t)\right)\Big|_{x=0} = 0.$$

Можно ли утверждать, что если в (1) функция $\Phi(x)$ является нечетной, то u(0,t)=0, а если $\Phi(x)$ четная функция, то $u_{x}(0,t)=0$?

Свойство 2. Пусть функция $\Phi(x)$ определена и непрерывна на прямой, является нечетной относительно точки x=0 и 2l-периодичной. Докажите, что функция u(x,t), определяемая интегралом Пуассона (1), удовлетворяет условиям: u(0,t)=u(l,t)=0.

Доказательство. Так как функция $G(0,\xi,t) = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{\xi^2}{4a^2t}}$ является

четной относительно точки ξ =0, то произведение $\Phi(\xi)G(0,\xi,t)$ - функция нечетная относительно точки ξ =0. Тогда

$$u(0,t) = \int_{-\infty}^{+\infty} \Phi(\xi) G(0,\xi,t) d\xi = 0$$

как интеграл от нечетной функции на симметричном промежутке. Для u(l,t) справедливы следующие преобразования для интеграла:

$$u(l,t) = \int_{-\infty}^{+\infty} \Phi(\xi)G(l,\xi,t)d\xi.$$

Так как $G(l,\xi,t)=rac{1}{2a\sqrt{\pi t}}e^{rac{(l-\xi)^2}{4a^2t}}=rac{1}{2a\sqrt{\pi t}}e^{rac{(0-(\xi-l))^2}{4a^2t}}=G(0,\xi-l,t),$ то

Выполнив замену $\eta=\xi-l$, получим

$$u(l,t) = \int_{-\infty}^{+\infty} \Phi(\eta + l)G(0,\eta,t)d\eta =$$

$$= \int_{-\infty}^{0} \Phi(\eta + l)G(0,\eta,t)d\eta + \int_{0}^{+\infty} \Phi(\eta + l)G(0,\eta,t)d\eta =$$

$$= \int_{0}^{+\infty} \Phi(-\eta + l)G(0,-\eta,t)d\eta + \int_{0}^{+\infty} \Phi(\eta + l)G(0,\eta,t)d\eta =$$

Так как $\Phi(-\eta + l) = -\Phi(\eta - l)$, $G(0, -\eta, t) = G(0, \eta, t)$, то

Так как $\Phi(\eta-l)=\Phi(\eta-l+2l)=\Phi(\eta+l)$, то

Домашнее задание

Решить примерный вариант контрольной работы № 3

KP-3:

18 мая – группа 22303

22 мая — группа 22304