Тест по дисциплине «Уравнения с частными производными»

Раздел 1. Уравнения с частными производными 1-го порядка

- 1. Общее решение уравнения $u_x + yu_y = 0$ имеет вид:
 - A. $u(x, y) = x \ln y + C$, где C произвольная постоянная,
 - В. $u(x, y) = F(x \ln |y|)$, где F(z) произвольная дифференцируемая функция,
 - С. $u(x, y) = F(x + \ln |y|)$, где F(z) произвольная дифференцируемая функция,
 - D. $F(x-\ln|y|-u) = C$, где C произвольная постоянная.
- 2. Частным решением уравнения $xu_x yu_y = 0$, удовлетворяющим условию u(x,1) = x, является функция:
 - A. $u(x, y) = x + \ln y$,
 - B. $u(x, y) = \frac{x}{y}$,
 - C. u(x, y) = xy,
 - D. u(x, y) = x + y 1.
- 3. Какие из перечисленных функций являются решениями уравнения $\frac{1}{x}u_x + \frac{1}{y}u_y = 0$:
 - A. $u(x, y) = \sin(x^2 y^2)$,
 - B. $u(x, y) = 2(x^2 y^2) + 4$,
 - C. $u(x, y) = \sqrt{x^2 y^2} + x$,
 - D. $u(x, y) = \frac{1}{\cos(x^2 + y^2) + 1}$.
- 4. Каким образом ввести новые независимые переменные $\xi = \xi(x, y)$, $\eta = \eta(x, y)$, чтобы уравнение $2u_x u_y = 0$ можно было бы привести к каноническому виду $u_\eta = 0$?
 - A. $\xi = x 2y$, $\eta = y$,
 - B. $\xi = x$, $\eta = x + 2y$,
 - C. $\xi = x$, $\eta = 2y$,
 - D. $\xi = x + 2y$, $\eta = x$.

Раздел 2. Простейшие уравнения в частных производных 2-го порядка

- 5. Общее решение уравнения $\frac{\partial^2 u}{\partial x^2} = 0$ имеет вид (C_1 и C_2 произвольные дифференцируемые функции):
 - A. $u = yC_1(x) + C_2(y)$,
 - B. $u = xC_1(x) + C_2(y)$,
 - C. $u = xC_1(y) + C_2(y)$,
 - D. $u = xC_1(y) + C_2(x, y)$.

- 6. Общее решение уравнения $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ имеет вид (C_1 и C_2 произвольные дифференцируемые функции):
 - A. $u = e^{-x}C_1(y) + C_2(y)$,
 - B. $u = e^{-x}C_1(x) + C_2(y)$,
 - C. $u = e^{-y}C_1(y) + C_2(x)$,
 - D. $u = e^{-x}C_1(y) + C_2(x)$.

Раздел 3. Классификация уравнений в частных производных 2-го порядка. Канонический вид уравнения

- 7. Какой тип имеет уравнение $u_{xx} + 2u_{xy} + 3u_{yy} + 2u_x u_y + u = 0$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 8. При каких значениях параметра a уравнение $u_{xx} + 2u_{xy} + (a-1)u_{yy} + u_y + u = 0$ имеет параболический тип?
 - A. a = 0.
 - B. a = 5.
 - C. a = 2.
 - D. Ни при каких.
- 9. В каких точках плоскости уравнение $u_{xx} 2xu_{xy} (y^2 4)u_{yy} + yu_x xu = y$ имеет гиперболический тип?
 - А. В любой точке плоскости.
 - В. Вне круга с центром в начале координат радиусом 2.
 - С. Внутри круга с центром в начале координат радиусом 2.
 - D. Ни в одной точке плоскости.
- 10. С помощью какого преобразования независимых переменных уравнение $u_{xx} + 4u_{xy} + 13u_{yy} = 0$ приводится к каноническому виду?
 - A. $\xi = 2x + y$, $\eta = 3x$.
 - B. $\xi = 2x + y$, $\eta = x$.
 - C. $\xi = 2x + y$, $\eta = -3x$.
 - D. $\xi = 2x y$, $\eta = 3x$.
- 11. Какой тип имеет уравнение $u_{tt} = a^2 u_{xx} + f(x,t)$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 12. Какой тип имеет уравнение $u_t = a^2 u_{xx} + f(x,t)$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.

- 13. Какой тип имеет уравнение $u_{xx} + u_{yy} = f(x, y)$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 14. Какое название соответствует уравнению $u_{tt} = a^2 u_{xx} + f(x,t)$?
 - А. Уравнение теплопроводности.
 - В. Волновое уравнение.
 - С. Уравнение Лапласа.
 - D. Уравнение Пуассона.
- 15. Какое название соответствует уравнению $u_t = a^2 u_{xx} + f(x,t)$?
 - А. Уравнение теплопроводности.
 - В. Волновое уравнение.
 - С. Уравнение Лапласа.
 - D. Уравнение Пуассона.
- 16. Какое название соответствует уравнению $u_{xx} + u_{yy} = 0$?
 - А. Уравнение теплопроводности.
 - В. Волновое уравнение.
 - С. Уравнение Лапласа.
 - D. Уравнение Пуассона.
- 17. Какое название соответствует уравнению $u_{xx} + u_{yy} = f(x, y)$?
 - А. Уравнение теплопроводности.
 - В. Волновое уравнение.
 - С. Уравнение Лапласа.
 - D. Уравнение Пуассона.
- 18. Уравнения какого типа имеют следующий канонический вид $u_{\xi\xi} + u_{\eta\eta} = F(\xi, \eta, u, u_{\xi}, u_{\eta})$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 19. Уравнения какого типа имеют следующий канонический вид $u_{\xi\eta} = F(\xi, \eta, u, u_{\xi}, u_{\eta})$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 20. Уравнения какого типа имеют следующий канонический вид $u_{\eta\eta} = F(\xi, \eta, u, u_{\xi}, u_{\eta})$?
 - А. Параболический.
 - В. Гиперболический.
 - С. Эллиптический.
- 21. Какой канонический вид имеет уравнение $u_{xx} + 2u_{xy} + 2u_{yy} = 0$?
 - A. $u_{\xi_n} = 0$.
 - B. $u_{\xi\xi} + u_{\eta\eta} = 0$.
 - C. $u_{\xi\xi} = 0$.
 - D. $u_{\xi} + u_{\eta\eta} = 0$.

Раздел 4. Задача Коши на прямой

22. Решение какой краевой задачи в области $D = \{(x,t): x \in R, t > 0\}$ представимо формулой Даламбера $u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(z) dz$?

A.
$$u_{tt} = a^2 u_{xx} + \varphi(x)$$
, $u(x,0) = \psi(x)$.

B.
$$u_{tt} = a^2 u_{xx}$$
, $u(x,0) = \varphi(x)$, $u_t(x,0) = \psi(x)$.

C.
$$u_{tt} = a^2 u_{xx}$$
, $u(x,0) = \psi(x)$, $u_t(x,0) = \varphi(x)$.

D.
$$u_{tt} = a^2 u_{xx}$$
, $u(0,t) = \varphi(t)$, $u(l,t) = \psi(t)$.

23. Какому условию удовлетворяет функция, представимая с помощью формулы Даламбера $u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int\limits_{z=t}^{x+at} \psi(z) dz, \text{ если функции } \varphi(x) \text{ и } \psi(x) \text{ являются нечетными?}$

A.
$$u(0,t) = 0$$
.

B.
$$u_{x}(0,t) = 0$$
.

C.
$$u(0,t) = u_x(0,t) = 0$$
.

D.
$$u_{x}(0,t) - u(0,t) = 0$$
.

24. Какому условию удовлетворяет функция, представимая с помощью формулы Даламбера $u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int\limits_{x-at}^{x+at} \psi(z) dz, \text{ если функции } \varphi(x) \text{ и } \psi(x) \text{ являются четными?}$

A.
$$u(0,t) = 0$$
.

B.
$$u_{x}(0,t) = 0$$
.

C.
$$u(0,t) = u_{x}(0,t) = 0$$
.

D.
$$u_{x}(0,t) - u(0,t) = 0$$
.

25. Решение какой краевой задачи в области $D = \{(x,t) : x \in R, \ t > 0\}$ представимо с помощью интеграла Пуассона $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{\frac{-(x-\xi)^2}{4a^2t}} d\xi$?

A.
$$u_t = a^2 u_{xx} + \varphi(x)$$
, $u(x,0) = 0$.

B.
$$u_{tt} = a^2 u_{xx}$$
, $u(x,0) = \varphi(x)$, $u_t(x,0) = 0$.

C.
$$u_t = a^2 u_{xx}$$
, $u(x,0) = \varphi(x)$.

D.
$$u_{tt} = a^2 u_{xx} + \varphi(x)$$
, $u(0,t) = u(l,t) = 0$.

26. Какому условию удовлетворяет функция, представимая с помощью интеграла Пуассона $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int\limits_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi, \text{ если функция } \varphi(x) \text{ является нечетной?}$

A.
$$u(0,t) = 0$$
.

B.
$$u_{r}(0,t) = 0$$
.

C.
$$u(0,t) = u_x(0,t) = 0$$
.

D.
$$u_{x}(0,t) - u(0,t) = 0$$
.

27. Какому условию удовлетворяет функция, представимая с помощью интеграла Пуассона

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi$$
, если функция $\varphi(x)$ является четной?

A.
$$u(0,t) = 0$$
.

B.
$$u_x(0,t) = 0$$
.

C.
$$u(0,t) = u_{x}(0,t) = 0$$
.

D.
$$u_{x}(0,t) - u(0,t) = 0$$
.

Раздел 5. Задача Штурма-Лиувилля

28. Собственными функциями задачи Штурма-Лиувилля $\begin{cases} X'' + cX = 0, \\ X(0) = X(1) = 0 \end{cases}$ являются функции:

A.
$$X_k = \sin k\pi x$$
, $k = 1, 2, ...$

B.
$$X_k = \sin kx$$
, $k = 1, 2, ...$

C.
$$X_k = \sin \frac{(2k+1)}{2} x$$
, $k = 0,1,2,...$

D.
$$X_k = \cos kx$$
, $k = 0, 1, 2, ...$

- 29. Для задачи Штурма-Лиувилля $\begin{cases} X'' + cX = 0, \\ X'(0) = X'(l) = 0 \end{cases}$ какие из нижеприведённых высказываний являются верными:
 - а) все собственные значения являются вещественными и неотрицательными.
 - б) все собственные функции имеют одинаковую норму.
 - в) собственные функции, соответствующие различным собственным значениям, **являются** ортогональными на отрезке [0; l] с весом, равным единице.
 - г) задача имеет конечное количество собственных значений.
 - А. Все верны.
 - В. а), в), г).
 - C. a), B).
 - D. a), δ), δ).
- 30. Для краевой задачи $u_t = u_{xx}$, $0 < x < \pi$, t > 0, $u(x,0) = \varphi(x)$, $u_x(0,t) = u_x(\pi,t) = 0$, соответствующей задачей Штурма-Лиувилля является:

A.
$$X''(x) + cX(x) = 0$$
, $X'(0) = 0$, $X(\pi) = 0$,

B.
$$X''(x) + cX(x) = 0$$
, $X(0) = 0$, $X(\pi) = 0$,

C.
$$X''(x) + cX(x) = 0$$
, $X(0) = 0$, $X'(\pi) = 0$,

D.
$$X''(x) + cX(x) = 0$$
, $X'(0) = 0$, $X'(\pi) = 0$.

Раздел 6. Смешанные краевые задачи. Метод Фурье

31. Решением смешанной задачи:
$$\begin{cases} u_t = u_{xx}, \ \ 0 < x < \pi, \ \ 0 < t < +\infty, \\ u(x,0) = \cos 2x, \ \ 0 \le x \le \pi, \\ u_x(0,t) = 0, \quad u_x(\pi,t) = 0, \quad 0 \le t < +\infty. \end{cases}$$
 является функция:

A.
$$u(x,t) = e^{-2t} \cos 2x$$
.

B.
$$u(x,t) = e^{-4t} \sin 2x$$
.

C.
$$u(x,t) = e^{4t} \cos 2x$$
.

D.
$$u(x,t) = e^{-4t} \cos 2x$$
.

32. Решением смешанной задачи:
$$\begin{cases} u_{tt} = 4u_{xx}, & 0 < x < \pi, & 0 < t < +\infty, \\ u(x,0) = \cos x, & u_{t}(x,0) = 0, & 0 \le x \le \pi, & \text{является функция:} \\ u(0,t) = 0, & u(\pi,t) = 0, & 0 \le t < +\infty \end{cases}$$

A.
$$u(x,t) = \cos x \cos 2t$$
.

B.
$$u(x,t) = \sin x \sin 4t$$
.

C.
$$u(x,t) = \sin x \cos 2t$$
.

D. ни одна из выше перечисленных.

33. В виде какого ряда можно искать решение смешанной краевой задачи:

$$\begin{cases} u_t = u_{xx} + f(x,t), & 0 < x < \pi, & 0 < t < +\infty, \\ u(x,0) = \varphi(x), & 0 \le x \le \pi, \\ u_x(0,t) = 0, & u_x(\pi,t) = 0, & 0 \le t < +\infty? \end{cases}$$

A.
$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) \sin kx$$
,

B.
$$u(x,t) = \sum_{k=0}^{\infty} T_k(t) \cos kx$$
,

C.
$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) \sin \frac{(2k-1)x}{2}$$
,

D.
$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) \cos \frac{(2k-1)x}{2}$$
,

Раздел 7. Краевые задачи для уравнений Лапласа и Пуассона

34. Какое максимальное значение принимает функция в круге с центром в начале координат и радиусом R = 1, которая является классическим решением краевой задачи:

$$u_{xx} + u_{yy} = 0$$
, $x^2 + y^2 < 1$,
 $u(x, y)|_{x^2 + y^2 = 1} = 5$.

Ответ:

35. Какое минимальное значение принимает функция в кольце, ограниченном окружностями с центром в начале координат и радиусами R_1 =1 и R_2 =2, которая является классическим решением краевой задачи:

$$u_{xx} + u_{yy} = 0$$
, $1 < x^2 + y^2 < 2$,
 $u(x, y)|_{x^2 + y^2 = 1} = 5$, $u(x, y)|_{x^2 + y^2 = 4} = 3$.

Ответ:

- 36. Какие из нижеприведённых высказываний являются верными:
- а) Для разрешимости задачи **Неймана** для уравнения Лапласа в ограниченной области необходимо, чтобы интеграл по границе области от нормальной производной искомой функции равнялся нулю.
- б) Для разрешимости задачи Дирихле для уравнения Лапласа в ограниченной области необходимо, чтобы интеграл по границе области от искомой функции равнялся нулю.
- в) Если функция является **гармонической** в замкнутой области, то интеграл по границе этой области от её нормальной производной равен нулю
- г) Если функция, гармоническая внутри замкнутой области, принимает на границе области постоянное значение, то она принимает это же значение в любой внутренней точке области.
 - А. а) и б).
 - В. а), в), г).
 - С. в), г).
 - D. Все верны.