

Уравнения математической физики

Сборник примеров и упражнений

Петрозаводск 2001

Петрозаводский государственный университет Математический факультет

Уравнения математической физики

Сборник примеров и упражнений для студентов математического факультета Петр ΓY

Петрозаводск 2001

Составители:

А.А.Рогов – к.ф.-м.н., доцент, Е.Е.Семенова – к.ф.-м.н., В.И.Чернецкий – заслуженный деятель науки Российской Федерации, д.т.н., Л.В.Шеголева – к.т.н.

Рецензенты:

Г.С.Сиговцев – к.ф.-м.н., доцент кафедры информатики и математического обеспечения ПетрГУ.

В.В.Старков – д.ф.-м.н., профессор кафедры математического анализа Петр Γ У.

Печатается по решению редакционно-издательского совета Петрозаводского государственного университета

Уравнения математической физики. Сборник примеров и упражнений /Сост. А.А.Рогов, Е.Е.Семенова, В.И.Чернецкий, Л.В.Щеголева. Петр Γ У. Петрозаводск, 2001. 220с.

Пособие представляет собой расширенный вариант сборника задач по курсу "Уравнения математической физики"и предназначено для студентов и магистров математического факультета ПетрГУ.

Издание осуществлено при поддержке ОАО "Кондопога

- © А.А.Рогов, Е.Е.Семенова, В.И.Чернецкий, Л.В.Щеголева, составление, 2001
- © Петрозаводский государственный университет, 2001

Предисловие

Настоящее пособие представляет собой расширенный вариант сборника задач по курсу "Уравнения математической физики"и предназначено для студентов и магистров математического факультета ПетрГУ.

Сборник учитывает возможность корректировки учебных программ курса в зависимости от объема учебного времени. Он может оказаться полезным для углубленного изучения предложенного материала в различных специальных дисциплинах.

Сборник состоит из пяти глав. В первой главе рассматриваются основные понятия операционного исчисления и применение преобразования Лапласа (операционного метода) к решению различных классов дифференциальных и интегральных уравнений.

Во второй главе дается классификация уравнений в частных производных. Для линейных уравнений второго порядка гиперболического, параболического и эллиптического типов вводятся понятия канонических форм, предложены задачи на приведение уравнений к каноническому виду и их решение методом характеристик.

В третью главу включены задачи на вывод уравнений и граничных условий, описывающих различные физические процессы: распространение тепла, вещества в различных средах, стационарные тепловые и диффузионные процессы и др. Здесь же рассматривается классификация и постановка краевых задач.

Задачи на свойства гармонических функций и простейшие краевые задачи для уравнений Лапласа и Пуассона рассматриваются в четвертой главе.

В пятой главе рассматриваются наиболее распространенные аналитические методы решения краевых задач математической физики: метод Даламбера, метод разделения переменных (метод Фурье, метод собственных функций), методы интегральных преобразований Фурье и Лапласа. Здесь также предложены задачи на анализ различных приемов преобразования (редукции) краевых задач.

В начале каждого параграфа даются краткие сведения из соответствующих разделов программы теоретического курса и приводятся решения типовых задач.

Большинство задач, включенных в сборник, были взяты из литературы, перечисленной в конце пособия. Ряд задач являются оригинальными.

Ответы ко всем задачам объединены в отдельный раздел пособия. Для задач, решение которых требует нестандартных приемов, даются указания.

Сборник задач не претендует на иллюстрацию всех методов, используемых в математической физике. Например, в нем отсутствуют задачи на применение вариационных и разностных методов, метода интегральных уравнений, теории специальных и обобщенных функций и др.

Представленное пособие учитывает многолетний опыт преподавания курса "Уравнения математической физики"и соответствует действующим образовательным стандартам по всем специальностям математического факультета ПетрГУ.

Глава І.

Основы операционного исчисления

§1. Понятия оригинала и изображения по Лапласу. Свойства преобразования Лапласа

Определение 1. Функцией-оригиналом называется любая комплекснозначная функция f(t) действительного аргумента t, удовлетворяющая условиям:

- 1) f(t) интегрируема по Риману на любом конечном интервале оси t (локально интегрируема);
- 2) для всех t < 0 f(t) = 0;
- 3) Существуют такие постоянные M>0 и $\alpha>0$, при которых

$$|f(t)| \le M \cdot e^{\alpha t}$$
 для $\forall t.$ (1.1)

Нижняя грань α_o всех чисел α , для которых справедливо неравенство (1.1), называется показателем роста функции f(t).

Первое условие в определении 1 иногда формулируют следующим образом: на любом конечном интервале оси t функция f(t) является непрерывной, кроме, быть может, конечного числа точек разрыва первого рода.

Простейшей функцией-оригиналом является единичная функция Хевисайда:

$$\chi(t) = \begin{cases} 1, \ t \ge 0, \\ 0, \ t < 0. \end{cases}$$

Очевидно, для любой функции $\phi(t)$

$$\phi(t) \cdot \chi(t) = \begin{cases} \phi(t), \ t \ge 0, \\ 0, \ t < 0. \end{cases}$$

Если при $t\geq 0$ функция $\phi(t)$ удовлетворяет условиям 1 и 3 определения 1, то функция $\phi(t)\chi(t)$ является оригиналом. В дальнейшем для сокращения записи будем, как правило, записывать $\phi(t)$ вместо $\phi(t)\chi(t)$, считая, что рассматриваемые нами функции продолжены нулем для отрицательных значений аргумента t.

Определение 2. Изображением функции f(t) по Лапласу называется функция F(p) комплексного переменного $p=s+i\sigma$, определяемая равенством

$$F(p) = \int_0^{+\infty} f(t) \cdot e^{-pt} dt. \tag{1.2}$$

Теорема 1 (об аналитичности изображения). Для любого оригинала f(t) его изображение F(p) определено и является аналитической функцией переменной p в полуплоскости $Re\,p>\alpha_0$, где α_0 – показатель роста функции f(t), при этом справедливо равенство

$$\lim_{Re \ p \to +\infty} |F(p)| = 0.$$

Теорема 2 (теорема единственности). Изображение по Лапласу F(p) единственно в том смысле, что две функции $f_1(t)$ и $f_2(t)$, имеющие одинаковые изображения, совпадают во всех точках непрерывности $npu\ t>0$.

Существует несколько вариантов записи соответствия между оригиналом и изображением:

$$f(t) \leftrightarrow F(p), \quad f(t) = F(p), \quad L\{f(t)\} = F(p).$$

В дальнейшем будем использовать первую запись.

Пример 1. Пользуясь определением, найти изображение функции

$$f(t) = \sin 3t.$$

Решение. Для функции $f(t) = \sin 3t$ имеем $\alpha_0 = 0$. Поэтому изображение F(p) будет определено и аналитично в полуплоскости $\operatorname{Re} p > 0$. Применим формулу (1.2) к заданной функции, используя при выполнении преобразований правило интегрирования по частям и ограничение на множество значений переменной p, обеспечивающее сходимость ин-

теграла:

$$\begin{split} F(p) &= \int_0^{+\infty} e^{-pt} \cdot \sin 3t \, dt = \\ &= -\frac{1}{p} e^{-pt} \sin 3t |_{t=0}^{t=+\infty} + \frac{3}{p} \int_0^{+\infty} e^{-pt} \cos 3t \, dt = \\ &= \frac{3}{p} \left\{ -\frac{1}{p} e^{-pt} \cos 3t |_{t=0}^{t=+\infty} - \frac{3}{p} \int_0^{+\infty} e^{-pt} \sin 3t \, dt \right\} = \\ &= \frac{3}{p^2} - \frac{9}{p^2} \int_0^{+\infty} e^{-pt} \sin 3t \, dt = \frac{3}{p^2} - \frac{9}{p^2} F(p). \end{split}$$

Получили равенство:

$$F(p) = \frac{3}{p^2} - \frac{9}{p^2}F(p).$$

Откуда находим

$$F(p) = \frac{3}{p^2 + 9}.$$

Таким образом, справедливо следующее соответствие:

$$\sin 3t \leftrightarrow \frac{3}{p^2+9}, \quad Re \, p > 0. \quad \triangleleft$$

На практике при построении изображений используются различные приемы, основанные на свойствах преобразования Лапласа. Справедливость свойств легко установить с помощью определений изображения и оригинала.

Свойства преобразования Лапласа

1. <u>Линейность.</u> Если $f(t) \leftrightarrow F(p), \ g(t) \leftrightarrow G(p),$ то для любых комплексных λ и μ

$$\lambda f(t) + \mu g(t) \leftrightarrow \lambda F(p) + \mu G(p), \qquad \text{Re } p > \max(\alpha_0, \beta_0).$$
 (1.3)

Здесь и далее $\alpha_0,\ \beta_0$ — показатели роста функций f(t) и g(t) соответственно.

2. Подобие. Если $f(t) \leftrightarrow F(p)$, то для $\forall a > 0$

$$f(at) \leftrightarrow \frac{1}{a} F\left(\frac{p}{a}\right), \qquad \text{Re } p > a\alpha_0.$$
 (1.4)

3. Дифференцирование оригинала. Если $f(t), f'(t), \ldots, f^{(n)}(t)$ – оригиналы и $f(t) \leftrightarrow F(p)$ для $\operatorname{Re} p > \alpha_0$, то

$$f^{(n)}(t) \leftrightarrow p^n F(p)$$

$$-p^{n-1}f(+0) - p^{n-2}f'(+0) - \dots - pf^{(n-2)}(+0) - f^{(n-1)}(+0), \quad (1.5)$$

где
$$f^{(k)}(+0) = \lim_{t \to +0} f^{(k)}(t), \ k = \overline{0, n-1}.$$

В частности, при n = 1 имеем

$$f'(t) \leftrightarrow pF(p) - f(+0)$$
.

Замечание. При построении изображений производных непрерывных в нуле функций в записи аргумента функции и ее производных знак "плюс" опускается.

4. Дифференцирование изображения. Если $F(p) \leftrightarrow f(t)$, то

$$F^{(n)}(p) \leftrightarrow (-t)^n f(t), \qquad \operatorname{Re} p > \alpha_0.$$
 (1.6)

В частности, при n=1 имеем

$$\frac{dF}{dp} \leftrightarrow -tf(t).$$

5. Интегрирование оригинала. Если $f(t) \leftrightarrow F(p)$, то

$$\int_{0}^{t} f(\tau) d\tau \leftrightarrow \frac{F(p)}{p}, \qquad \operatorname{Re} p > \alpha_{0}. \tag{1.7}$$

6. <u>Интегрирование изображения.</u> Если $f(t) \leftrightarrow F(p)$ и $\frac{f(t)}{t}$ — оригинал,

$$\frac{f(t)}{t} \leftrightarrow \int_{p}^{\infty} F(\zeta) d\zeta, \qquad \operatorname{Re} p > \alpha_{0}. \tag{1.8}$$

7. Теорема запаздывания. Если $f(t) \leftrightarrow F(p)$ и f(t) = 0 при $t < \tau$, где $\tau > 0$, то

$$f(t-\tau) \leftrightarrow e^{-\tau p} \cdot F(p), \qquad \text{Re } p > \alpha_0.$$
 (1.9)

Замечание. Возможна следующая формулировка свойства запаздывания: если $f(t) \leftrightarrow F(p)$, то для любых $\tau > 0$ имеет место:

$$f(t-\tau)\chi(t-\tau) \leftrightarrow e^{-\tau p} \cdot F(p), \quad \text{Re } p > \alpha_0.$$

8. Теорема смещения. Если $f(t) \leftrightarrow F(p)$, то для любого комплексного λ

$$e^{\lambda t} f(t) \leftrightarrow F(p - \lambda), \qquad \operatorname{Re} p > \alpha_0 + \operatorname{Re} \lambda.$$
 (1.10)

9. <u>Изображение свертки</u>. *Сверткой* функций f и g называется функция, которая обозначается f * g и определяется равенством

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau.$$
 (1.11)

Свертка функций обладает свойством симметричности, т.е.

$$(f * g)(t) = (g * f)(t).$$

Если $f(t) \leftrightarrow F(p)$ и $g(t) \leftrightarrow G(p)$, то

$$(f * g)(t) \leftrightarrow F(p) \cdot G(p), \qquad \operatorname{Re} p > \max(\alpha_0, \beta_0).$$
 (1.12)

Таблица некоторых оригиналов и изображений

Оригинал	Изображение	Оригинал	Изображение
f(t)	F(p)	f(t)	F(p)
1	$\frac{1}{p}$	$\cos at$	$\frac{p}{p^2 + a^2}$
$t^n, n \in \mathbb{Z}$	$\frac{p}{n!}{p^{n+1}}$	$\operatorname{sh} at$	$\frac{a}{p^2 - a^2}$
$t^{\alpha}, \ \alpha > -1$	$\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$	$\operatorname{ch} at$	$\frac{p}{p^2 - a^2}$
e^{-at}	$\frac{1}{p+a}$	$e^{-at}\cos\omega t$	$\frac{p+a}{(p+a)^2 + \omega^2}$
$\sin at$	$\frac{a}{p^2 + a^2}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(p+a)^2 + \omega^2}$

Пример 2. Используя свойства преобразования Лапласа и таблицу основных оригиналов и изображений, найти изображения следующих функций:

1)
$$f(t) = e^{-4t} \sin 3t \cos 2t;$$
 3) $f(t) = t^2 e^{3t};$

2)
$$f(t) = e^{(t-2)} \sin(t-2);$$
 4) $f(t) = \frac{\sin^2 t}{t}.$

Решение. \triangleright 1) Преобразуем выражение для функции f(t) следующим образом:

$$f(t) = e^{-4t} \sin 3t \cos 2t = \frac{1}{2}e^{-4t} (\sin 5t + \sin t) = \frac{1}{2}e^{-4t} \sin 5t + \frac{1}{2}e^{-4t} \sin t.$$

Так как

$$\sin t \leftrightarrow \frac{1}{p^2+1} \quad \text{if} \quad \sin 5t \leftrightarrow \frac{5}{p^2+25},$$

то, используя свойство линейности и теорему смещения, для изображения функции f(t) будем иметь:

$$F(p) = \frac{1}{2} \left(\frac{5}{(p+4)^2 + 25} + \frac{1}{(p+4)^2 + 1} \right).$$

2) Так как

$$\sin t \leftrightarrow \frac{1}{p^2+1}, \quad e^t \sin t \leftrightarrow \frac{1}{(p-1)^2+1},$$

то, используя теорему запаздывания, будем иметь

$$f(t) = e^{t-2}\sin(t-2) \leftrightarrow F(p) = \frac{e^{-2p}}{(p-1)^2 + 1}.$$

3) Так как $t^2 \leftrightarrow \frac{2}{p^3}$, то по теореме смещения имеем:

$$f(t) = t^2 e^{3t} \leftrightarrow F(p) = \frac{2}{(p-3)^3}.$$

Приведем для сравнения способ построения изображения функции $f(t)=t^2e^{3t}$ с применением свойства дифференцирования изображения:

$$\begin{split} e^{3t} & \leftrightarrow \quad \frac{1}{p-3}; \\ te^{3t} & \leftrightarrow \quad -\frac{d}{dp} \left(\frac{1}{p-3}\right) = \frac{1}{(p-3)^2}; \\ t^2 e^{3t} & \leftrightarrow \quad -\frac{d}{dp} \left(\frac{1}{(p-2)^2}\right) = \frac{2}{(p-3)^3}. \end{split}$$

Получили тот же результат.

4) Так как

$$\sin^2 t = \frac{1}{2} - \frac{1}{2}\cos 2x \leftrightarrow \frac{1}{2p} - \frac{1}{2} \cdot \frac{p}{p^2 + 4},$$

то, используя свойство интегрирования изображения, будем иметь:

$$\begin{aligned} \frac{\sin^2 t}{t} &\leftrightarrow \int_p^{\infty} \left(\frac{1}{2p} - \frac{1}{2} \cdot \frac{p}{p^2 + 4} \right) dp = \\ &= \left(\frac{1}{2} \ln p - \frac{1}{4} \ln(p^2 + 4) \right) \Big|_p^{\infty} = \frac{1}{4} \ln \frac{p^2}{p^2 + 4} \Big|_p^{\infty} = \frac{1}{4} \ln \frac{p^2 + 4}{p^2}. \quad \triangleleft \end{aligned}$$

• Для функции, заданной следующим образом:

$$f(t) = \begin{cases} 0, & t < t_1, \\ f_1(t), & t_1 \le t < t_2, \\ f_2(t), & t_2 \le t < t_3, \\ \dots \\ f_{n-1}(t), & t_{n-1} \le t < t_n, \\ f_n(t), & t \ge t_n, \end{cases}$$

с помощью функции Хевисайда можно записать аналитическое выражение, которое удобно использовать при построении соответствующего изображения.

Легко проверить, что для функции $g_k(t)$, равной

$$g_k(t) = \begin{cases} 0, & t < t_k, \\ f_k(t), & t_k \le t < t_{k+1}, \\ 0, & t \ge t_{k+1}, \end{cases}$$

справедливо следующее представление с помощью функции Хевисайда:

$$g_k(t) = f_k(t)\chi(t - t_k) - f_k(t)\chi(t - t_{k+1}).$$
(1.13)

А для функции

$$g_n(t) = \begin{cases} 0, & t < t_n, \\ f_n(t), & t \ge t_n \end{cases}$$

имеет место запись в виде:

$$g_n(t) = f_n(t)\chi(t - t_n). \tag{1.14}$$

Считая, что k меняется от 1 до n-1, функцию f(t) можно рассматривать как сумму функций $g_k(t)$ и $g_n(t)$:

$$f(t) = \sum_{k=1}^{n-1} g_k(t) + g_n(t).$$

И тогда, используя выражения (1.13) и (1.14), получим

$$f(t) = \sum_{k=1}^{n-1} (f_k(t)\chi(t-t_k) - f_k(t)\chi(t-t_{k+1})) + f_n(t)\chi(t-t_n).$$

Полученное выражение можно привести к виду:

$$f(t) = f_1(t)\chi(t - t_1) + \sum_{k=2}^{n} (f_k(t) - f_{k-1}(t))\chi(t - t_k).$$
 (1.15)

Пример 3. Построить изображение для функции f(t):

$$f(t) = \begin{cases} 0, & t < a, \\ \phi(t), & a \le t < b, \\ 0, & t \ge b. \end{cases}$$

Решение.> Запишем выражение для функции f(t) с помощью функции Хевисайда:

$$f(t) = \phi(t)\chi(t-a) - \phi(t)\chi(t-b).$$

Так как

$$\phi(t) = \phi(t - a + a) \quad \text{if} \quad \phi(t) = \phi(t - b + b),$$

то, найдя изображения для функций $\phi(t+a)$ и $\phi(t+b)$,

$$\phi(t+a) \leftrightarrow \Phi_1(p), \quad \phi(t+b) \leftrightarrow \Phi_2(p),$$

построим изображение для функции f(t), учитывая теорему запаздывания:

$$f(t) \leftrightarrow F(p) = \Phi_1(p)e^{-ap} - \Phi_2(p)e^{-bp}$$
.

Пример 4. Найти изображение F(p) функции f(t):

$$f(t) = \left\{ \begin{array}{ll} 0, & \text{если } t \in (-\infty; 0); \\ 1, & \text{если } t \in [0; a); \\ \frac{2a - t}{a}, & \text{если } t \in (a; 3a); \\ \frac{t - 4a}{a}, & \text{если } t \in [3a; \infty). \end{array} \right.$$

Решение. Найдем изображение функции f(t), предварительно записав выражение для нее с помощью функции Хевисайда $\chi(t)$. Для этого

воспользуемся формулой (1.15). Так как для заданной функции

$$t_1 = 0, t_2 = a, t_3 = 3a$$
 и

$$f_1(t) = 1$$
, $f_2(t) = \frac{2a - t}{a}$, $f_3(t) = \frac{t - 4a}{a}$,

то будем иметь

$$f(t) = 1 \cdot \chi(t) + \left(\frac{2a - t}{a} - 1\right) \chi(t - a) + \left(\frac{t - 4a}{a} - \frac{2a - t}{a}\right) \chi(t - 3a) =$$

$$= \chi(t) - \frac{t - a}{a} \chi(t - a) + \frac{2(t - 3a)}{a} \cdot \chi(t - 3a).$$

Применяя свойство линейности и теорему запаздывания к построенному выражению, находим искомое изображение F(p).

Ответ:
$$F(p) = \frac{1}{p} - \frac{1}{ap^2}e^{-ap} + \frac{2}{ap^2}e^{-3ap}$$
.

Упражнения

- 1. Какие из указанных функций являются функциями-оригиналами:
 - 1) $f(t) = b^t \cdot \chi(t), \ b > 0, b \neq 1;$ 2) $f(t) = e^{(2+4i)t} \cdot \chi(t);$

3) $f(t) = \frac{1}{(1-t)^2} \cdot \chi(t);$

4) $f(t) = t^2 \cdot \chi(t);$

5) $f(t) = e^{t^2} \cdot \chi(t)$;

- 6) $f(t) = e^{-t} \cos t \cdot \chi(t).$
- 2. Пользуясь определением, найдите изображения следующих функций:
 - 1) f(t) = t; 2) $f(t) = \sin 3t$; 3) $f(t) = t \cdot e^t$.

Укажите области сходимости интегралов, определяющих изображения.

- 3. Найдите изображения функций, используя указанные свойства:
 - А. Свойства линейности и подобия
 - 1) 1+t; 2) $2\sin t \cos t;$ 3) $t + \frac{e^{-t}}{2};$ 4) $\sin 4t;$
 - 5) $\operatorname{sh}3t$; 6) $\sin^2 t$; 7) $\sin mt \cdot \sin nt$; 8) $\cos^3 t$.

Б. Дифференцирование оригинала

1)
$$f(t) = \cos^2 t;$$
 2) $f(t) = \sin^3 t;$ 3) $f(t) = t \cdot \cos bt;$

- 4) $f(t) = t \cdot e^t$.
- В. Дифференцирование изображения

1)
$$f(t) = t^2 \cdot \cos t$$
; 2) $f(t) = t \cdot (e^t + \cosh t)$.

Г. Интегрирование оригинала

1)
$$f(t) = \int_0^t \sin \tau \, d\tau;$$
 2) $f(t) = \int_0^t (\tau + 1) \cdot \cos \omega \tau \, d\tau;$

3)
$$f(t) = \int_0^t \tau^2 \cdot e^{-\tau} d\tau$$
.

Д. Интегрирование изображения

1)
$$f(t) = \frac{e^t - 1}{t}$$
; 2) $f(t) = \frac{\sin^2 t}{t}$;

3)
$$f(t) = \frac{\cos t - \cos 2t}{t}$$
; 4) $f(t) = \frac{e^t - 1 + t}{t}$.

Е. Теорема смещения

1)
$$f(t) = e^{2t} \cdot \sin t$$
; 2) $f(t) = e^{-\alpha t} \cdot \cos^2 \beta t$.

Ж. Теорема запаздывания

1)
$$f(t) = \sin(t-b) \cdot \chi(t-b);$$
 2) $f(t) = \cos^2(t-b) \cdot \chi(t-b).$

3. Изображение свертки

1)
$$f(t) = \int_0^t (t - \tau)e^{\tau} d\tau;$$
 2) $f(t) = \int_0^t e^{t - \tau} \sin \tau d\tau;$

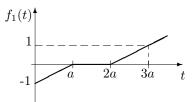
3)
$$f(t) = \int_0^t (t - \tau)^2 \operatorname{ch} \tau \, d\tau;$$
 4) $f(t) = \int_0^t e^{2(\tau - t)} \tau^2 \, d\tau.$

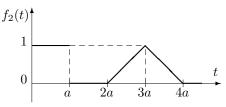
4. Изображения периодических функций. Пусть функция f(t), периодическая с периодом T, есть функция-оригинал. Покажите, что ее изображение по Лапласу F(p) дается формулой:

$$F(p) = \frac{1}{1 - e^{-pT}} \int_0^T e^{-pt} \cdot f(t) dt$$
 (1.16)

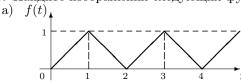
и определено в полуплоскости $\operatorname{Re} p = s > 0$.

5. Постройте изображения функций, заданных графически:





6. Найдите изображения следующих функций:



б)
$$f(t) = |\sin t|.$$

7. Покажите, что если $f(t) \leftrightarrow F(p)$, то для любых $a \geq 0$ справедливо следующее соответствие:

$$f(t)\chi(t-a) \leftrightarrow F(p) - \int_0^a f(t)e^{-pt} dt.$$

§2. Восстановление оригинала по изображению

Теорема 1 (формула обращения преобразования Лапласа, формула Меллина). Пусть f(t) – оригинал, а F(p) – его изображение. Если функция f(t) непрерывна в точке t и имеет в этой точке конечные односторонние производные, то

$$f(t) = \frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} e^{pt} F(p) \, dp.$$
 (2.1)

Несобственный интеграл (2.1) берется вдоль любой прямой ${\rm Re}\, p=b>\alpha_o$, где α_o – показатель роста функции f(t), и понимается в смысле главного значения, т.е.

$$\int_{b-i\infty}^{b+i\infty} e^{pt} F(p) dp = \lim_{R \to +\infty} \int_{b-iR}^{b+iR} e^{pt} F(p) dp.$$

Теорема 2 (первая теорема разложения). Пусть функция F(p) регулярна в точке $p=\infty, F(\infty)=0$ и пусть ее ряд Лорана в окрестности точки $p=\infty$ имеет вид

$$F(p) = \sum_{n=1}^{\infty} \frac{c_n}{p^n}.$$
 (2.2)

Тогда оригиналом изображения F(p) является функция

$$f(t) = \sum_{n=0}^{\infty} \frac{c_{n+1}}{n!} \cdot t^n.$$
 (2.3)

Определение. Функция F(p) называется *мероморфной* в комплексной плоскости, если она регулярна в любой ограниченной области комплексной плоскости, за исключением, быть может, конечного числа особых точек типа полюс.

Теорема 3 (вторая теорема разложения). Пусть мероморфная функция F(p) регулярна в полуплоскости $Rep > \alpha$ и удовлетворяет условиям:

1. Существует система окружностей

$$C_n:|p|=R_n,\quad R_1< R_2<\dots,\ R_n\to\infty\ (n\to\infty)$$
 такая, что $\max_{p\in C_n}|F(p)|\to 0\ (n\to\infty).$

2. При $\forall a > \alpha$ интеграл $\int\limits_{-\infty}^{\infty} |F(a+i\sigma)| \, d\sigma$ сходится.

Tогда F(p) – изображение, оригиналом для которого служит функция

$$f(t) = \sum_{(p_k)} \underset{p=p_k}{\text{res}} \left[F(p)e^{pt} \right], \qquad (2.4)$$

где сумма берется по всем полюсам p_k функции F(p).

Следствие. Если $F(p) = \frac{A_n(p)}{B_m(p)}$, где A_n, B_m – многочлены степени n и m соответственно, не имеющие общих нулей, и если n < m, то

$$f(t) = \sum_{k=1}^{l} \frac{1}{(m_k - 1)!} \left. \frac{d^{m_k - 1}}{dp^{m_k - 1}} \left\{ F(p) e^{pt} (p - p_k)^{m_k} \right\} \right|_{p = p_k}, \tag{2.5}$$

где p_1,\ldots,p_l – различные нули многочлена $B_m(p),m_k$ – кратность нуля $p_k,\;\sum\limits_{k=1}^lm_k=m.$

В частности, если все полюсы функции F(p) простые, то формула (2.5) принимает вид

$$f(t) = \sum_{k=1}^{m} \frac{A_n(p_k)}{B'_m(p_k)} e^{p_k t}.$$
 (2.6)

Вместо формулы обращения (2.1) обычно используются таблицы оригиналов и изображений и свойства преобразования Лапласа.

Если F(p) – рациональная функция, то для нахождения оригинала такую функцию часто бывает удобно представить в виде суммы элементарных дробей вида

$$\frac{A}{p-a}$$
, $\frac{Ap+B}{(p-a)^2+b^2}$, $\frac{A}{(p-a)^k}$, $\frac{Ap+B}{((p-a)^2+b^2))^k}$, $k=2,3,\ldots$

$$(A, B, a, b$$
 – некоторые постоянные),

для каждой их которых можно построить соответствующий оригинал. Действительно, используя теорему смещения и таблицу оригиналов и изображений (см. стр.9), найдем:

$$\frac{A}{p-a} \leftrightarrow Ae^{at}, \quad \frac{A}{(p-a)^k} \leftrightarrow \frac{A}{(k-1)!} t^{k-1} e^{at}, \ k=2,3,\ldots;$$

$$\frac{Ap+B}{(p-a)^2 + b^2} = \frac{A(p-a) + B + Aa}{(p-a)^2 + b^2} \leftrightarrow Ae^{at}\cos bt + \frac{B + Aa}{b}e^{at}\sin bt.$$

Пусть $S_k(p) \leftrightarrow s_k(t)$. Построим оригинал для изображения

$$S_k(p) = \frac{Ap + B}{((p-a)^2 + b^2)^k}, \quad k = 1, 2, 3, \dots$$

в случае, когда k>1. Рассмотрим выражение для изображения $S_2(p)$. Так как

$$S_2(p) = \frac{Ap+B}{(p-a)^2+b^2} \cdot \frac{1}{(p-a)^2+b^2},$$

то, применяя свойство изображения свертки, построим соответствующий оригинал

$$s_2(t) = \frac{1}{b} \int_0^t s_1(t-\tau)e^{a\tau} \sin b\tau \, d\tau.$$

Здесь оригинал $s_1(t)$ определяется выражением:

$$s_1(t) = Ae^{at}\cos bt + \frac{B + Aa}{b}e^{at}\sin bt.$$

Далее, так как

$$S_3(p) = S_2(p) \cdot \frac{1}{(p-a)^2 + b^2},$$

TO

$$s_3(t) = \frac{1}{b} \int_0^t s_2(t-\tau)e^{a\tau} \sin b\tau \, d\tau.$$

Аналогичные рассуждения приводят к следующему соотношению:

$$s_k(t) = \frac{1}{b} \int_0^t s_{k-1}(t-\tau)e^{a\tau} \sin b\tau \, d\tau, \quad k \ge 2.$$

Пример 1. Найти оригинал, соответствующий изображению:

$$F(p) = \frac{1}{p^3 - p}.$$

Решение.⊳ Разложив заданное изображение на сумму элементарных дробей:

$$\frac{1}{p^3 - p} = \frac{1}{p(p-1)(p+1)} = -\frac{1}{p} + \frac{1}{2(p-1)} + \frac{1}{2(p+1)},$$

найдем оригинал

$$f(t) = -1 + \frac{1}{2}e^t + \frac{1}{2}e^{-t} = -1 + \operatorname{ch} t.$$

Пример 2. Найти оригинал, соответствующий изображению:

$$F(p) = \frac{1}{(p^2 + 4)^2}.$$

Решение.⊳ Применяя свойство изображения свертки, будем иметь:

$$F(p) = \frac{1}{(p^2+4)^2} = \frac{1}{p^2+4} \cdot \frac{1}{p^2+4} \, \leftrightarrow \, \frac{1}{4} \int_0^t \sin 2(t-\tau) \cdot \sin 2\tau \, d\tau.$$

Вычислив интеграл, получим искомое выражение для оригинала:

$$f(t) = \frac{1}{16}\sin 2t - \frac{1}{8}t\cos 2t. \quad \triangleleft$$

Пример 3. Найти оригинал, соответствующий изображению:

$$F(p) = \frac{p^2 + 2}{p^3 - p^2 - 6p}.$$

Решение. Так как $p^3 - p^2 - 6p = p(p-3)(p+2)$, то функция F(p) имеет три простых полюса: $p_1 = 0$, $p_2 = 3$ и p = -2. Построим соответствующий оригинал с помощью формулы (2.6):

$$f(t) = \frac{(p^2 + 2)e^{pt}}{3p^2 - 2p - 6} \bigg|_{p=0} + \frac{(p^2 + 2)e^{pt}}{3p^2 - 2p - 6} \bigg|_{p=3} + \frac{(p^2 + 2)e^{pt}}{3p^2 - 2p - 6} \bigg|_{p=-2} =$$

$$= -\frac{1}{3} + \frac{11}{15}e^{3t} + \frac{3}{5}e^{-2t}. \quad \triangleleft$$

Пример 4. Найти оригинал по изображению:

$$F(p) = \frac{e^{-\frac{p}{2}}}{p(p+1)(p^2+4)}.$$

Решение.⊳ Представим дробь, входящую в выражение в виде простейших дробей:

$$\frac{1}{p(p+1)(p^2+4)} = \frac{A}{p} + \frac{B}{p+1} + \frac{Cp+D}{p^2+4}.$$

Применяя к разложению метод неопределенных коэффициентов, получим:

$$A = \frac{1}{4}$$
; $B = D = -\frac{1}{5}$; $C = -\frac{1}{20}$.

Изображение примет вид:

$$F(p) = \frac{1}{4} \frac{e^{-\frac{p}{2}}}{p} - \frac{1}{5} \frac{e^{-\frac{p}{2}}}{p+1} - \frac{1}{20} \frac{pe^{-\frac{p}{2}}}{p^2+4} - \frac{1}{5} \frac{e^{-\frac{p}{2}}}{p^2+4}.$$
 (a)

Используя соотношения:

$$\frac{1}{p} \leftrightarrow \chi(t), \quad \frac{1}{p+1} \leftrightarrow e^{-t} \chi(t),$$
$$\frac{p}{p^2+4} \leftrightarrow \cos 2t \ \chi(t), \quad \frac{1}{p^2+4} \leftrightarrow \frac{1}{2} \sin 2t \ \chi(t)$$

и учитывая теорему запаздывания, получим для изображения (а) искомый оригинал.

Ответ:

$$f(t) = \left(\frac{1}{4} - \frac{1}{5}e^{-\left(t - \frac{1}{2}\right)} - \frac{1}{20}\cos\left(2t - 1\right) - \frac{1}{10}\sin\left(2t - 1\right)\right) \cdot \chi\left(t - \frac{1}{2}\right). \triangleleft t$$

Пример 5. Найти оригинал для изображения:

$$F(p) = \frac{e^{-\frac{p}{3}}}{p(p^2 + 1)}.$$

Решение. □ Применяя теорему о свертке и таблицу соответствия оригиналов и изображений, получим:

$$\frac{1}{p(p^2+1)} \leftrightarrow \int_0^t \sin \tau d\tau = -\cos \tau |_0^t = (1-\cos t)\chi(t).$$

При построении оригинала для заданного изображения применим теорему запаздывания.

Ответ:
$$f(t) = (1 - \cos(t - \frac{1}{3}))\chi(t - \frac{1}{3})$$
.

Упражнения

8. Найдите оригинал по известному изображению:

1)
$$F(p) = \frac{1}{p(p-1)(p^2+4)};$$
 2) $F(p) = -\frac{1}{(p^2+1)^2};$
3) $F(p) = \frac{1}{p^2+4p+5};$ 4) $F(p) = \frac{2p^3+p^2+2p+2}{p^5+2p^4+2p^3};$
5) $F(p) = \frac{p^2+2p-1}{p^3-2p^2+2p-1};$ 6) $F(p) = \frac{e^{-p/2}}{p(p+1)(p^2+4)};$

7)
$$F(p) = \frac{e^{-p}}{p^2 - 2p + 5} + \frac{p \cdot e^{-2p}}{p^2 + 9};$$
8)
$$F(p) = \frac{1}{p^2 + 1} \cdot \left(e^{-2p} + 2e^{-3p} + 3e^{-4p}\right);$$
9)
$$F(p) = \frac{1}{p^2 + 1} + \frac{1}{p^2 + 2p + 2} + \frac{e^{-p}}{p^2 - 2p + 2};$$
10)
$$F(p) = \sum_{n=0}^{\infty} \left(\frac{e^{-p}}{p}\right)^k.$$

9. Пусть известны оригиналы изображений F(p) и G(p), т.е. $F(p) \leftrightarrow f(t)$ и $G(p) \leftrightarrow g(t)$. Покажите, что изображение pF(p)G(p) можно представить в одном из четырех видов:

$$pF(p)G(p) \leftrightarrow f(+0)g(t) + \int_{0}^{t} f'(\tau)g(t-\tau) d\tau =$$

$$= f(+0)g(t) + \int_{0}^{t} g(\tau)f'(t-\tau) d\tau =$$

$$= g(+0)f(t) + \int_{0}^{t} g'(\tau)f(t-\tau) d\tau =$$

$$= g(+0)f(t) + \int_{0}^{t} f(\tau)g'(t-\tau) d\tau.$$
(2.7)

(Формулы (2.7) носят название *интегралов Дюамеля*).

- **10.** Постройте формулу оригинала для изображения $\frac{F(p)G(p)}{p}$ с помощью оригиналов f(t) и g(t), соответствующих изображениям F(p) и G(p).
- 11. Постройте оригиналы для заданных изображений:

1)
$$F(p) = \frac{1}{p - e^{-p}};$$
 2) $F(p) = \frac{1}{p} \cdot \frac{1}{p - e^{-p}}.$

§3. Применение преобразования Лапласа к решению дифференциальных уравнений и их систем

- Способ решения различных классов уравнений и других задач с помощью преобразования Лапласа получил название операционного метода.
- 1. Дифференциальные уравнения и системы с постоянными коэффициентами. Рассмотрим линейное дифференциальное уравнение *n*-го порядка с постоянными коэффициентами

$$Lx \equiv x^{(n)}(t) + a_1 x^{(n-1)}(t) + \dots + a_{n-1} x'(t) + a_n x(t) = f(t).$$
 (3.1)

Поставим задачу Коши: найти решение уравнения (3.1), удовлетворяющее условиям:

$$x(0) = x_0, x'(0) = x_1, \dots, x^{(n-1)}(0) = x_{n-1},$$
 (3.2)

 $i \partial e x_i - 3 a \partial a$ нные константы, $i = \overline{0, n-1}$.

Предполагая, что функция f(t) является оригиналом, будем искать решение x(t) задачи (3.1)-(3.2) на множестве оригиналов.

Пусть $X(p) \leftrightarrow x(t)$, $F(p) \leftrightarrow f(t)$. По правилу дифференцирования оригинала и свойству линейности, переходя в уравнении (3.1) к изображениям, в силу условий (3.2) получаем уравнение для неизвестного изображения X(p) (далее будем использовать термин *операторное уравнение*)

$$A(p)X(p) - B(p) = F(p),$$

где

$$A(p) = p^n + a_1 p^{n-1} + \ldots + a_{n-1} p + a_n,$$

$$B(p) = x_o(p^{n-1} + a_1p^{n-2} + \dots + a_{n-1}) + x_1(p^{n-2} + a_1p^{n-3} + \dots + a_{n-2}) + \dots + x_{n-2}(p+a_1) + x_{n-1}.$$

Отсюда

$$X(p) = \frac{B(p) + F(p)}{A(p)}.$$

Для нахождения искомого решения x(t) задачи (3.1)-(3.2) нужно восстановить оригинал x(t) по его изображению X(p).

Аналогично применяется операционный метод к решению систем линейных дифференциальных уравнений с постоянными коэффициентами.

Пример 1. Найти решение дифференциального уравнения:

$$x'(t) + x(t) = e^{-t},$$

удовлетворяющее условию: x(0) = 1 (задача Коши).

Решение. \triangleright Пусть $x(t) \leftrightarrow X(p)$. Так как

$$\begin{aligned} x'(t) & \leftrightarrow & pX(p) - x(0) = pX(p) - 1, \\ e^{-t} & \leftrightarrow & \frac{1}{p+1}, \end{aligned}$$

то, применив к заданному уравнению преобразование Лапласа, используя свойство линейности, получим алгебраическое уравнение относительно X(p):

$$pX(p) - 1 + X(p) = \frac{1}{p+1}.$$

Откуда находим выражение для X(p):

$$X(p) = \frac{1}{(p+1)^2} + \frac{1}{p+1}.$$

Так как

$$\frac{1}{p+1} \mathop{\leftrightarrow} e^{-t}, \quad \frac{1}{(p+1)^2} \mathop{\leftrightarrow} te^{-t},$$

то имеем

$$X(p) \leftrightarrow x(t) = e^{-t} \cdot t + e^{-t}$$
.

Проверка: Покажем, что найденная функция действительно является решением задачи Коши. Подставляем выражение для функции x(t) и ее производной

$$x'(t) = -e^{-t} \cdot t + e^{-t} - e^{-t} = -e^{-t} \cdot t$$

в заданное уравнение:

$$-e^{-t} \cdot t + e^{-t} \cdot t + e^{-t} = e^{-t}.$$

После приведения подобных слагаемых в левой части уравнения получаем верное тождество: $e^{-t} \equiv e^{-t}$. Таким образом, построенная функция является решением уравнения.

Проверим, удовлетворяет ли она начальному условию x(0) = 1:

$$x(0) = e^{-0} + e^{-0} \cdot 0 = 1.$$

Следовательно, найденная функция является решением задачи Коши.

Ответ: $x(t) = e^{-t} \cdot t + e^{-t}$.

Пример 2. Найти решение дифференциального уравнения:

$$x''(t) + 3x'(t) = e^t,$$

удовлетворяющее условиям: x(0) = 0, x'(0) = -1.

Решение. Применим к уравнению преобразование Лапласа. Воспользовавшись свойством линейности и учитывая, что

$$\begin{array}{lcl} x(t) & \leftrightarrow & X(p), \\ x'(t) & \leftrightarrow & p \cdot X(p) - x(0) = pX(p) - 0 = pX(p), \\ x''(t) & \leftrightarrow & p^2 \cdot X(p) - p \cdot x(0) - x'(0) = p^2 X(p) - p \cdot 0 - (-1) = \\ & & = p^2 X(p) + 1, \\ e^t & \leftrightarrow & \frac{1}{p-1}, \end{array}$$

получим алгебраическое уравнение относительно X(p):

$$p^2X(p) + 1 + 3pX(p) = \frac{1}{p-1} \iff (p^2 + 3p)X(p) = \frac{1}{p-1} - 1.$$

Найдем фундаментальное решение:

$$H(p) = \frac{1}{p^2 + 3p} = \frac{1}{3} \cdot \left(\frac{1}{p} - \frac{1}{p+3}\right) \leftrightarrow h(t) = \frac{1}{3} \cdot \left(1 - e^{-3t}\right).$$

Тогда, так как

$$X(p) = \left(\frac{1}{p-1} - 1\right) \cdot H(p) = \frac{1}{p-1}H(p) - H(p),$$

то, используя свойство изображения свертки, решение заданного уравнения запишем в виде:

$$x(t) = \int_0^t e^{t-\tau} \cdot \frac{1}{3} \cdot \left(1 - e^{-3\tau}\right) d\tau - \frac{1}{3} \left(1 - e^{-3t}\right).$$

Вычислив интегралы и приведя подобные слагаемые, получим окончательный ответ.

Ответ: $x(t) = -\frac{2}{3} + \frac{1}{4}e^t + \frac{5}{12}e^{-3t}$.

Проверка: Имеем

$$x(t) = -\tfrac{2}{3} + \tfrac{1}{4}e^t + \tfrac{5}{12}e^{-3t}, \quad x'(t) = \tfrac{1}{4}e^t - \tfrac{5}{4}e^{-3t}, \quad x''(t) = \tfrac{1}{4}e^t + \tfrac{15}{4}e^{-3t}.$$

Подставляем эти выражения в заданное уравнение:

$$\frac{1}{4}e^t + \frac{15}{4}e^{-3t} + 3\left(\frac{1}{4}e^t - \frac{5}{4}e^{-3t}\right) \equiv e^t.$$

В результате получаем тождество: $e^t \equiv e^t$. Следовательно, найденная

функция является решением уравнения. Проверим выполнение начальных условий:

$$x(0) = \frac{1}{4}e^0 + \frac{5}{12}e^0 - \frac{2}{3} = \frac{3}{12} + \frac{5}{12} - \frac{8}{12} = 0;$$

$$x'(0) = \frac{1}{4}e^0 - \frac{5}{4}e^0 = \frac{1}{4} - \frac{5}{4} = -1.$$

Следовательно, найденная функция является решением задачи Коши. \triangleleft

Пример 3. Найти решение дифференциального уравнения:

$$x'''(t) + 2x''(t) + 5x' = 0,$$

удовлетворяющее условиям: x(0) = -1, x'(0) = 2, x''(0) = 0.

Решение.
> Пусть $x(t) \leftrightarrow X(p)$. Так как, учитывая заданные условия, имеем

$$\begin{array}{lcl} x'(t) & \leftrightarrow & p \cdot X(p) - x(0) = pX(p) - (-1) = pX(p) + 1, \\ x''(t) & \leftrightarrow & p^2 \cdot X(p) - p \cdot x(0) - x'(0) = \\ & & = p^2 X(p) - p \cdot (-1) - 2 = p^2 X(p) + p - 2, \\ x'''(t) & \leftrightarrow & p^3 \cdot X(p) - p^2 \cdot x(0) - p \cdot x'(0) - x''(0) = \\ & & = p^3 X(p) - p^2 \cdot (-1) - p \cdot 2 - 0 = p^3 X(p) + p^2 - 2p, \end{array}$$

то после применения к заданному уравнению преобразования Лапласа получим следующее операторное уравнение:

$$p^{3}X(p) + p^{2} - 2p + 2p^{2}X(p) + 2p - 4 + 5pX(p) + 5 = 0$$

или после преобразований:

$$X(p) \cdot (p^3 + 2p^2 + 5p) = -p^2 - 1.$$

Решая это уравнение относительно X(p), получим

$$X(p) = \frac{-p^2 - 1}{p(p^2 + 2p + 5)}.$$

Полученное выражение разложим на простые дроби:

$$\frac{-p^2 - 1}{p(p^2 + 2p + 5)} = \frac{A}{p} + \frac{Bp + C}{p^2 + 2p + 5}.$$

С помощью метода неопределенных коэффициентов найдем A, B, C. Для этого приведем дроби к общему знаменателю и приравняем коэффициенты при равных степенях p:

$$\frac{-p^2-1}{p(p^2+2p+5)} = \frac{Ap^2+2Ap+5A+Bp^2+Cp}{p(p^2+2p+5)}.$$

Получим систему алгебраических уравнений относительно A, B, C:

$$A + B = -1$$
, $2A + C = 0$, $5A = -1$,

решением которой будут:

$$A = -\frac{1}{5}, \quad B = -\frac{4}{5}, \quad C = \frac{2}{5}.$$

Тогда

$$X(p) = -\frac{1}{5p} + \frac{1}{5} \cdot \frac{-4p+2}{p^2 + 2p + 5}.$$

Чтобы найти оригинал второй дроби, выделим в ее знаменателе полный квадрат: $p^2 + 2p + 5 = (p+1)^2 + 4$, тогда в числителе выделим слагаемое p+1: -4p+2 = -4(p+1)+6 и разложим дробь на сумму двух дробей:

$$\frac{1}{5} \cdot \frac{-4p+2}{p^2+2p+5} = -\frac{4}{5} \cdot \frac{p+1}{(p+1)^2+4} + \frac{3}{5} \cdot \frac{2}{(p+1)^2+4}.$$

Далее, воспользовавшись теоремой смещения и таблицей соответствия изображений и оригиналов, получим решение исходного уравнения.

Ответ: $x(t) = -\frac{1}{5} - \frac{4}{5}e^{-t}\cos 2t + \frac{3}{5}e^{-t}\sin 2t$.

Пример 4. Найти решение системы:

$$\begin{cases} \frac{dx_1}{dt} = x_1 + 2x_2 + \sin t, \\ \frac{dx_2}{dt} = -x_1 + x_2 + 1, \end{cases}$$

удовлетворяющее начальным условиям:

$$x_1(0) = 1, \ x_2(0) = 0.$$

Решение. Построим решение с помощью преобразования Лапласа, предварительно сведя систему к одному эквивалентному уравнению второго порядка.

1. Выразим неизвестную функцию $x_2(t)$ из первого уравнения системы

$$x_2 = \frac{1}{2} \left(\frac{dx_1}{dt} - x_1 - \sin t \right), \quad \frac{dx_2}{dt} = \frac{1}{2} \left(\frac{d^2x_1}{dt^2} - \frac{dx_1}{dt} - \cos t \right)$$

и подставим во второе уравнение:

$$\frac{1}{2} \left(\frac{d^2 x_1}{dt^2} - \frac{dx_1}{dt} - \cos t \right) = -x_1 + \frac{1}{2} \left(\frac{dx_1}{dt} - x_1 - \sin t \right) + 1.$$

Преобразуем полученное уравнение, введя обозначение f(t) для правой части:

$$\frac{d^2x_1}{dt^2} - 2\frac{dx_1}{dt} + 3x_1 = \cos t - \sin t + 2 \equiv f(t). \tag{*}$$

2. Найдем начальные условия:

$$x_1(t)|_{t=0} = 1; \quad x_1'(t)|_{t=0} = (x_1 + 2x_2 + \sin t)|_{t=0} = 1.$$
 (**)

3. Применим преобразование Лапласа к уравнению (*) с начальными условиями (**). Пусть $X_1(p) \leftrightarrow x_1(t), \ F(p) \leftrightarrow f(t),$ тогда будем иметь

$$p^{2}X_{1}(p) - p - 1 - 2pX_{1}(p) + 2 + 3X_{1}(p) = F(p),$$

$$X_{1}(p) (p^{2} - 2p + 3) = F(p) + p - 1,$$

$$X_{1}(p) = \frac{F(p)}{p^{2} - 2p + 3} + \frac{p - 1}{p^{2} - 2p + 3}.$$

4. Найдем фундаментальное решение:

$$h(t) \leftrightarrow H(p) = \frac{1}{p^2 - 2p + 3} = \frac{1}{(p-1)^2 + (\sqrt{2})^2} \leftrightarrow \frac{1}{\sqrt{2}} e^t \sin \sqrt{2}t.$$

5. Найдем оригинал $x_1(t)$, учитывая, что $h'(t) \leftrightarrow pH(p) - h(0) = pH(p)$,

$$x_1(t) = \int_0^t h(t - \tau) f(\tau) d\tau + h'(t) - h(t).$$

Выражение для функции $x_2(t)$ можно построить, используя второе уравнение заданной системы, подставив в него найденное выражение для функции $x_1(t)$:

$$x_2(t) = \frac{1}{2} \left(\frac{dx_1}{dt} - x_1 - \sin t \right).$$

Ответ: $x_1(t) = \frac{2}{3} - \frac{1}{2}t + \frac{1}{3}e^t\cos\sqrt{2}t + \frac{7\sqrt{2}}{12}e^t\sin\sqrt{2}t,$ $x_2(t) = -\frac{1}{3} - \frac{1}{4}\cos t - \frac{1}{4}\sin t + \frac{7}{12}e^t\cos\sqrt{2}t - \frac{\sqrt{2}}{6}e^t\sin\sqrt{2}t.$

Пример 5. Решить систему дифференциальных уравнений:

$$\begin{cases} x'(t) = -x(t) + y(t) + e^t, \\ y'(t) = x(t) - y(t) + e^t \end{cases}$$

при начальных условиях: x(0) = y(0) = 1.

Решение.> Пусть $x(t) \leftrightarrow X(p), \ y(t) \leftrightarrow Y(p).$ Так как, учитывая заданные условия, имеем

$$x'(t) \leftrightarrow pX(p) - x(0) = pX(p) - 1,$$

$$y'(t) \leftrightarrow pY(p) - p \cdot y(0) = pY(p) - 1,$$

то, применив к каждому уравнению системы преобразование Лапласа, получим систему алгебраических уравнений относительно X(p) и Y(p):

$$\begin{cases} X(p) + pX(p) - 1 = Y(p) + \frac{1}{p-1}, \\ Y(p) + pY(p) - 1 = X(p) + \frac{1}{p-1}. \end{cases}$$

Решив систему методом Гаусса или с помощью формул Крамера, найдем выражения для изображений X(p) и Y(p):

$$X(p) = Y(p) = \frac{1}{p-1}.$$

Соответствующие оригиналы дают решение задачи.

Ответ: $x(t) = e^t$, $y(t) = e^t$.

Пример 6. Решить краевую задачу для дифференциального уравнения:

$$x''(t) - x'(t) = -2t$$

с граничными условиями: x(0) = 0, x(1) = 3.

Решение. > Применяем к уравнению преобразование Лапласа:

$$\begin{array}{lcl} x(t) & \leftrightarrow & X(p), \\ x'(t) & \leftrightarrow & p \cdot X(p) - x(0) = pX(p), \\ x''(t) & \leftrightarrow & p^2 \cdot X(p) - p \cdot x(0) - x'(0) = p^2 X(p) - p \cdot 0 - x'(0) = \\ & = p^2 X(p) - x'(0). \end{array}$$

Обозначим неизвестное значение x'(0) через x_1 . Тогда

$$x''(t) \leftrightarrow p^2 \cdot X(p) - x_1$$
.

Операторное уравнение имеет вид

$$X(p)(p^2 - p) = \frac{x_1p^2 - 2}{p^2},$$

решением которого будет функция:

$$X(p) = \frac{2-x_1}{p} + \frac{2}{p^2} + \frac{2}{p^3} + \frac{x_1-2}{p-1}.$$

Соответствующий оригинал имеет вид

$$x(t) = (2 - x_1) + 2t + t^2 + (x_1 - 2)e^t$$
.

Используя второе граничное условие задачи x(1) = 3, найдем неизвестное значение $x_1: 2-x_1+2+1+(x_1-2)e=3$. Откуда $x_1=2$.

Ответ: $x(t) = 2t + t^2$. \triangleleft

Пример 7. Решить краевую задачу для дифференциального уравнения:

$$x''(t) - 2x'(t) + x(t) = 6te^t,$$

 $x(1) = e, \quad x(2) = 8e^2, \quad e = 2.71828...$

Решение. Обозначим неизвестные значения $x(0) = x_0$ и $x'(0) = x_1$ и, применив к уравнению преобразование Лапласа, построим соответствующее операторное уравнение

$$p^{2}X(p) - px_{0} - x_{1} - 2(pX(p) - x_{0}) + X(p) = \frac{6}{(p-1)^{2}}.$$

Откуда находим выражение для изображения X(p):

$$X(p) = \frac{6}{(p-1)^4} + \frac{x_0}{p-1} + \frac{x_1 - x_0}{(p-1)^2}.$$

Для него легко установить соответствующий оригинал

$$x(t) = t^3 e^t + x_0 e^t + (x_1 - x_0) t e^t.$$

Чтобы найти неизвестные значения x_0 и x_1 , воспользуемся граничными условиями задачи: x(1) = e и $x(2) = 8e^2$. Имеем:

$$x(1) = e + x_0 e + x_1 e - x_0 e = e \Longrightarrow x_1 = 0,$$

 $x(2) = 8e^2 + x_0 e^2 - 2x_0 e^2 = 8e^2 \Longrightarrow x_0 = 0.$

Ответ: $x(t) = t^3 e^t$. \triangleleft

Упражнения

- **12.** Найдите решения уравнений, удовлетворяющие заданным условиям (Задача Коши):
 - 1) $x' + 3x = e^t$, x(0) = 1;

2)
$$x'' - x' - 6x = 4$$
, $x(0) = 1$, $x'(0) = 0$;

3)
$$x'' + 2x' - 3x = e^{-t}$$
, $x(0) = 0$, $x'(0) = 1$;

4)
$$x'' + 2x' = t \sin t$$
, $x(0) = x'(0) = 0$;

5)
$$x''' + 3x'' - 4x = 0$$
, $x(0) = x'(0) = 0$, $x''(0) = 2$;

6)
$$x''' + x'' = \sin t$$
, $x(0) = x'(0) = 1$, $x''(0) = 0$;

7)
$$x''' + 6x'' + 11x' + 6x = 1 + t + t^2$$
, $x(0) = x'(0) = x''(0) = 0$;

8)
$$x'' - x' = -2t$$
, $x(2) = 8$, $x'(2) = 6$;

9)
$$x'' + 2x' + x = 2 \cdot e^{1-t}$$
, $x(1) = x'(1) = -1$;

10)
$$x^{IV} + 2x'' + x = \sin t$$
, $x(0) = x'(0) = x''(0) = x'''(0) = 0$.

13. Найдите решения систем уравнений, удовлетворяющие заданным условиям:

1)
$$\begin{cases} x' + y = 0, \\ y' + x = 0, \end{cases} x(0) = 1, y(0) = -1;$$

1)
$$\begin{cases} x' + y = 0, \\ y' + x = 0, \end{cases} x(0) = 1, \ y(0) = -1;$$
2)
$$\begin{cases} x' + 7x - y = 0, \\ y' + 2x + 5y = 0, \end{cases} x(0) = y(0) = 1;$$

3)
$$\begin{cases} x' - y' - 2x + 2y = 1 - 2t, \\ x'' + 2y' + x = 0, \end{cases} x(0) = y(0) = x'(0) = 0;$$

4)
$$\begin{cases} x'' - 3x' + 2x + y' - y = 0, & x(0) = x'(0) = y'(0) = 0, \\ -x' + x + y'' - 5y' + 4y = 0, & y(0) = 1; \end{cases}$$

5)
$$\begin{cases} 2x'' - x' + 9x - y'' - y' - 3y = 0, & x(0) = x'(0) = 1, \\ 2x'' + x' + 7x - y'' + y' - 5y = 0, & y(0) = y'(0) = 0; \end{cases}$$

6)
$$\begin{cases} x' + y' - y = e^t, \\ 2x' + y' + 2y = \cos t, \end{cases} \quad x(0) = y(0) = 0;$$

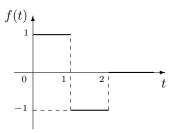
7)
$$\begin{cases} x' = -x + y + z + e^t, \\ y' = x - y + z + e^{3t}, & x(0) = y(0) = z(0) = 0; \\ z' = x + y + z + 4, \end{cases}$$

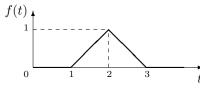
8)
$$\begin{cases} x' = y + z, \\ y' = 3x + z, & x(0) = 0, \ y(0) = z(0) = 1; \\ z' = 3x + y, \end{cases}$$

9)
$$\begin{cases} x'' = 3(y - x + z), & x(0) = x'(0) = 0, \\ y'' = x - y, & y(0) = 0, \ y'(0) = -1, \ z'' = -z, & z(0) = 1, \ z'(0) = 0. \end{cases}$$

- **14.** Решите задачи Коши в случае, когда функция f(t) в уравнении задана графически:

 - 1) x'' + x = f(t), 2) x'' + 9x = f(t), x(0) = x'(0) = 0, x''(0) = 1





- Решите следующие краевые задачи:
 - 1) x''(t) + x'(t) = 2t, x(1) = 0, x'(1) = -1;
 - 2) $x'' + x = 2\sin t$, x(0) = 1, $x(\frac{\pi}{2}) = -\frac{\pi}{2}$;
 - 3) $x''(t) x'(t) = t \cdot e^t$, x(0) = 1, $x(2) = e^2$;
 - 4) $x'' + x = t \cdot \cos t$, $x(\pi) = -\frac{\pi}{4}$, $x(\pi/2) = \frac{1}{4} \cdot \left(\frac{\pi^2}{4} 1\right)$.
 - 2. Дифференциальные уравнения с переменными коэффициентами. Pacсмотрим уравнение вида

$$a_0(t)x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \dots + a_n(t)x(t) = f(t),$$
 (3.3)

где $a_i(t), i = \overline{0,n}$ – многочлены степени m_i , а функция f(t) является оригиналом. Обозначим $m = max\{m_0, m_1, \dots, m_n\}$. Будем предполагать, что задача Коши для уравнения (3.3) с условиями

$$x(0) = x_0, \ x'(0) = x_1, \ \dots, \ x^{(n-1)}(0) = x_{n-1}$$
 (3.4)

имеет решение на множестве оригиналов. Пусть $x(t) \leftrightarrow X(p)$. По теореме о дифференцировании изображения имеем

$$t^{k}x^{(s)}(t) \leftrightarrow (-1)^{k} \frac{d^{k}}{dp^{k}} \left(L\{x^{(s)}(t)\} \right) =$$

$$= (-1)^{k} \frac{d^{k}}{dp^{k}} \left(p^{s}X(p) - p^{s-1}x_{0} - \dots - x_{s-1} \right).$$

Таким образом, применяя к обеим частям уравнения (3.3) преобразование Лапласа, уравнение (3.3) преобразуем в дифференциальное уравнение m-го порядка относительно изображения X(p). После этого задача интегрирования уравнения (3.3) упрощается.

Пример 8. Найти решение уравнения:

$$tx''(t) - (1+t)x'(t) + 2(1-t)x(t) = 0.$$

Решение. Пусть $x(t) \leftrightarrow X(p)$. Тогда, используя свойства дифференцирования оригинала и дифференцирования изображения, запишем:

$$\begin{array}{lll} x'(t) & \leftrightarrow & pX(p)-x(0), \\ x''(t) & \leftrightarrow & p^2X(p)-px(0)-x'(0), \\ tx(t) & \leftrightarrow & -\frac{dX(p)}{dp}, \\ tx'(t) & \leftrightarrow & -\frac{d}{dp}\left\{pX(p)-x(0)\right\} = -p\frac{dX}{dp}-X(p), \\ tx''(t) & \leftrightarrow & -\frac{d}{dp}\left\{p^2X(p)-px(0)-x'(0)\right\} = -p^2\frac{dX}{dp}-2pX(p)+x(0). \end{array}$$

Применив к заданному уравнению преобразование Лапласа, получим следующее операторное уравнение:

$$-p^{2}\frac{dX(p)}{dp} - 2pX(p) + x(0) -$$

$$-pX(p) + x(0) + p\frac{dX(p)}{dp} + X(p) + 2X(p) + 2\frac{dX(p)}{dp} = 0,$$

которое легко привести к виду:

$$(p^2 - p - 2)\frac{dX}{dp} + 3(p - 1)X(p) = 2x(0).$$

Решив полученное обыкновенное дифференциальное уравнение, например, методом вариации произвольной постоянной, построим его общее решение:

$$X(p) = \frac{x(0)}{p-2} + \frac{c}{(p-2)(p+1)^2}.$$

3десь c – произвольная постоянная. Далее, так как

$$\begin{split} \frac{1}{p-2} & \leftrightarrow & e^{2t}, \\ \frac{1}{(p+1)^2} & \leftrightarrow & t \cdot e^{-t}, \\ \frac{1}{(p-2)(p+1)^2} & \leftrightarrow & \int_0^t \tau e^{-\tau} \cdot e^{2(t-\tau)} \, d\tau = \frac{1}{9} \left(e^{2t} - (3t+1)e^{-t} \right), \end{split}$$

то общее решение заданного уравнения будет иметь вид:

$$x(t) = x(0)e^{2t} + c\left(\frac{1}{9}e^{2t} - \frac{1}{9}(3t+1)e^{-t}\right) = (x(0) + c_1)e^{2t} - c_1(3t+1)e^{-t},$$

где c_1 – произвольная постоянная. \triangleleft

Упражнения

16. Найдите решения уравнений:

1)
$$t \cdot x'' - 2x' = 0;$$
 2) $t \cdot x'' + (2t - 1) \cdot x' + (t - 1) \cdot x = 0$

1)
$$t \cdot x'' - 2x' = 0;$$
 2) $t \cdot x'' + (2t - 1) \cdot x' + (t - 1) \cdot x = 0;$
3) $t \cdot x'' + 2x' = 0;$ 4) $x'' + (t + 1) \cdot x' + t \cdot x = 0,$
 $x(0) = 1, x'(0) = -1;$

5)
$$x'' + (t+b) \cdot x' = 0$$
, 6) $x'' + t \cdot x' - (t+1) \cdot x = 0$, $x(0) = -1, \ x'(0) = 0$, $x(0) = x'(0) = 1$. $b \in R$;

Решите систему уравнений:

$$\begin{cases} 3tx' = 2x + y - z, \\ 2ty' = x + 3y + z, \\ 6tz' = -x + 7y + 5z, \end{cases} x(1) = y(1) = z(1) = 1.$$

3. Применение формул Дюамеля (2.7) к решению дифференциальных уравнений

Задача. Пусть $\tilde{x}(t)$ – решение уравнения

$$L[x] \equiv a_o x^{(n)}(t) + a_1 x^{(n-1)}(t) + \dots + a_n x(t) = 1,$$
 (3.5)

где $a_i = const, \forall i = \overline{0, n}$, удовлетворяющее нулевым начальным услови-ЯМ

$$x(0) = x'(0) = \dots = x^{(n-1)}(0) = 0.$$
 (3.6)

Показать, что решение уравнения

$$L[x] = f(t), (3.7)$$

где функция f(t) является оригиналом, удовлетворяющее условиям (3.6), можно представить в виде

$$x(t) = \int_0^t \tilde{x}'(\tau)f(t-\tau) d\tau \tag{3.8}$$

или в виде

$$x(t) = \tilde{x}(t)f(0) + \int_0^t f'(\tau)\tilde{x}(t-\tau) d\tau.$$
 (3.9)

• Заметим, что результат задачи позволяет находить решение линейного дифференциального уравнения с постоянными коэффициентами при нулевых начальных условиях, не находя изображения правой части этого уравнения.

Пример 9. Найти решение уравнения

$$x''(t) + x(t) = \frac{1}{1 + \cos^2 t},$$

удовлетворяющее условиям: x(0) = x'(0) = 0.

Решение.⊳ Построим решение вспомогательной задачи:

$$x''(t) + x(t) = 1, \quad x(0) = x'(0) = 0.$$
 (*)

Соответствующее уравнению (*) операторное уравнение имеет вид:

$$p^2X(p) + X(p) = \frac{1}{p}.$$

Откуда получаем

$$X(p) = \frac{1}{p(p^2+1)} = \frac{1}{p} - \frac{p}{p^2+1} \mathop{\leftrightarrow} 1 - \cos t.$$

Таким образом, решением задачи (*) является функция

$$\tilde{x}(t) = 1 - \cos t.$$

С помощью формулы (3.8), учитывая свойство симметричности свертки, найдем решение заданного уравнения:

$$x(t) = \int_0^t \frac{1}{1 + \cos^2 \tau} \cdot \sin(t - \tau) d\tau.$$

Вычислив интеграл, получим

$$x(t) = -\frac{1}{2\sqrt{2}}\sin t \cdot \ln \left| \frac{\sin t - \sqrt{2}}{\sin t + \sqrt{2}} \right| + \cos t \cdot \arctan(\cos t) - \frac{\pi}{4}\cos t. \quad \triangleleft$$

• Требование, чтобы начальные условия были нулевыми, является несущественным, так как простой заменой искомой функции задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями.

Действительно, пусть требуется найти решение уравнения (3.7), удовлетворяющее ненулевым начальным условиям:

$$x(0) = x_0, \ x'(0) = x_1, \dots, \ x^{(n-1)}(0) = x_{n-1}.$$
 (3.10)

Выполним замену

$$x(t) = y(t) + w(t),$$
 (3.11)

где y(t) — новая неизвестная функция, а функция w(t) — определена следующим образом:

$$w(t) = x_0 + x_1 t + \frac{x_2}{2!} t^2 + \ldots + \frac{x_{n-1}}{(n-1)!} t^{n-1}$$

и, очевидно, удовлетворяет условиям:

$$w(0) = x_0, \ w'(0) = x_1, \ \dots, \ w^{(n-1)}(0) = x_{n-1}.$$

Тогда задача для уравнения (3.7) с условием (3.10) с помощью замены (3.11) приводится к следующей: найти решение уравнения

$$L[y] = f(t) - L[w] \equiv f_1(t),$$

удовлетворяющее нулевым начальным условиям:

$$y(0) = y'(0) = \dots = y^{(n-1)} = 0.$$

Упражнения

18. Найдите решения уравнений, удовлетворяющие заданным начальным условиям x(0) = x'(0) = 0:

1)
$$x''(t) - x(t) = \frac{1}{1 + e^t};$$
 2) $x''(t) - x'(t) = \frac{e^{2t}}{(1 + e^t)^2};$

3)
$$x''(t) + 2 \cdot x'(t) + x = \frac{e^{-t}}{1+t}$$
; 4) $x'' - x' = \frac{e^{2t}}{2+e^t}$;

5)
$$x'' - x' = \frac{1}{1 + e^t}$$
; 6) $x'' + x = \frac{1}{2 + \cos t}$.

§4. Применение преобразования Лапласа к решению дифференциальных уравнений с запаздывающим аргументом

Рассмотрим линейное дифференциальное уравнение с запаздывающим аргументом с постоянными коэффициентами:

$$x^{(n)}(t) = \sum_{k=0}^{n-1} a_k x^{(k)}(t - \tau_k) + f(t), \quad 0 < t < +\infty,$$
(4.1)

где $a_k=const, \quad au_k=const\geq 0.$ Будем считать, что

$$x(t) = x'(t) = \ldots = x^{(n-1)}(t) \equiv 0$$
 для $\forall t < 0$.

Пусть требуется найти решение уравнения (4.1), удовлетворяющее начальным условиям:

$$x(0) = x'(0) = \dots = x^{(n-1)}(0) = 0.$$
 (4.2)

Применяя к обеим частям уравнения (4.1) преобразование Лапласа и учитывая свойство запаздывания оригинала, получим операторное уравнение для изображения $X(p) \leftrightarrow x(t)$:

$$p^{n}X(p) = \sum_{k=0}^{n-1} a_{k}p^{k}X(p)e^{-\tau_{k}p} + F(p), \tag{4.3}$$

где $F(p) \leftrightarrow f(t)$. Из (4.3) для X(p) будем иметь:

$$X(p) = \frac{F(p)}{p^n - \sum_{k=0}^{n-1} a_k p^k e^{-\tau_k p}}.$$
(4.4)

Оригинал для изображения (4.4) определяет решение уравнения (4.1), удовлетворяющее условиям (4.2).

Сформулируем задачу для уравнения с запаздывающим аргументом, описывающую *процесс с последействием*. Требуется найти непрерывно дифференцируемое решение x(t) при $t \geq t_o$ уравнения

$$x'(t) = f(t, x(t), x(t - \tau)), \quad \tau = const > 0,$$
 (4.5)

если известно, что

$$x(t) = \phi(t)$$
 для $t \in [t_o - \tau; t_o].$ (4.6)

Начальная функция $\phi(t)$ — заданная непрерывно дифференцируемая функция. Отрезок $[t_o - \tau; t_o]$, на котором задается функция $\phi(t)$, называется начальным множеством.

Если уравнение (4.5) является линейным, то его решение, удовлетворяющее условию (4.6), можно найти с помощью преобразования Лапласа. Пусть $t_o=0$, тогда при построении соответствующего операторного уравнения следует учитывать то, что для изображения функции $x(t-\tau)$ имеем

$$x(t-\tau) \leftrightarrow \int_0^\infty e^{-pt} x(t-\tau) dt = \int_{-\tau}^\infty e^{-p(\eta+\tau)} x(\eta) d\eta =$$

$$= \int_{-\tau}^0 e^{-p(\eta+\tau)} x(\eta) d\eta + \int_0^\infty e^{-p(\eta+\tau)} x(\eta) d\eta =$$

$$= e^{-p\tau} \int_{-\tau}^0 e^{-p\eta} \phi(\eta) d\eta + e^{-p\tau} X(p). \tag{4.7}$$

При восстановлении оригиналов по известным изображениям можно воспользоваться следующим разложением:

$$\frac{1}{1 - \frac{\gamma e^{-np}}{(p+a)^m}} = 1 + \frac{\gamma e^{-np}}{(p+a)^m} + \left(\frac{\gamma e^{-np}}{(p+a)^m}\right)^2 + \dots = \sum_{k=0}^{\infty} \left(\frac{\gamma e^{-np}}{(p+a)^m}\right)^k, (4.8)$$

которое справедливо для любых $n,m\in N$ при условии $Re\,p>0.$

Пример 1. Найти решение уравнения

$$x'(t) = x(t-1) + 1, \quad x(0) = 0.$$

Решение. Считая, что $x(t) \equiv 0$ для $t \in [-1;0]$, применение преобразования Лапласа к заданному уравнению дает следующее операторное уравнение:

$$pX(p) = X(p)e^{-p} + \frac{1}{p}.$$

Откуда

$$X(p) = \frac{1}{p} \cdot \frac{1}{p - e^{-p}} = \frac{1}{p^2} \cdot \frac{1}{1 - \frac{e^{-p}}{p}}.$$

Далее, применяя формулу (4.8), получим

$$X(p) = \frac{1}{p^2} \sum_{k=0}^{\infty} \left(\frac{e^{-p}}{p} \right)^k = \sum_{k=0}^{\infty} \frac{e^{-pk}}{p^{k+2}}.$$

Учитывая теорему запаздывания, построим выражение для соответствующего оригинала x(t) в виде:

$$x(t) = \sum_{k=0}^{\infty} \frac{(t-k)^{k+1}}{(k+1)!} \chi(t-k).$$

Оно определяет решение задачи. ⊲

Пример 2. Найти решение уравнения

$$x'(t) = x(t-1),$$

если $x(t) \equiv 2$ для $\forall x \in [-1; 0]$.

Решение.> Пусть $x(t) \leftrightarrow X(P)$. Из условия следует, что x(0)=2, поэтому имеем:

$$x'(t) \leftrightarrow pX(p) - x(0) = pX(p) - 2.$$

Применим к обеим частям заданного уравнения преобразование Лапласа. Для правой части уравнения имеем:

$$x(t-1) \leftrightarrow \int_0^\infty e^{-pt} x(t-1) dt = \int_{-1}^\infty e^{-p(z+1)} x(z) dz =$$

$$= \int_{-1}^0 e^{-p(z+1)} x(z) dz + \int_0^\infty e^{-p(z+1)} x(z) dz =$$

$$= 2 \int_{-1}^0 e^{-p(z+1)} dz + e^{-p} X(p) = \frac{2}{p} (1 - e^{-p}) + e^{-p} X(p).$$

Следовательно, соответствующее операторное уравнение имеет вид:

$$pX(p) - 2 = \frac{2}{p}(1 - e^{-p}) + e^{-p}X(p).$$

Отсюда получаем:

$$X(p) = 2 \cdot \frac{p+1-e^{-p}}{p^2 - pe^{-p}} = \frac{2}{p} + \frac{2}{p(p-e^{-p})}.$$

Используя результат предыдущего примера, построим оригинал в виде:

$$x(t) = 2\left(\chi(t) + \sum_{k=0}^{\infty} \frac{(t-k)^{k+1}}{(k+1)!}\chi(t-k)\right).$$

Пример 3. Найти решение уравнения

$$x'(t) + 2x(t) - x(t-1) = f(t),$$

если x(0) = 0 и $x(t) \equiv 0$ для $\forall t < 0$.

Решение. \triangleright Пусть $x(t) \leftrightarrow X(p), \ f(t) \leftrightarrow F(p)$. Так как при заданных условиях $x(t-1) \leftrightarrow e^{-p}X(p)$, то операторное уравнение, соответствующее заданному, имеет вид:

$$pX(P) + 2X(p) - e^{-p}X(p) = F(p).$$

Решение этого уравнения запишем в виде произведения:

$$X(p) = \frac{1}{p+2 - e^{-p}} \cdot F(p).$$

Построим оригинал для функции:

$$Y(p) = \frac{1}{p + 2 - e^{-p}},$$

выполнив следующие преобразования:

$$Y(p) = \frac{1}{p+2 - e^{-p}} = \frac{1}{p+2} \left(\frac{1}{1 - \frac{e^{-p}}{p+2}} \right) = \sum_{k=0}^{\infty} \frac{e^{kp}}{(p+2)^{k+1}}.$$

Последнее равенство записано, учитывая формулу (4.8). Переходя к оригиналам для слагаемых суммы ряда, используя соответствие

 $t^k \leftrightarrow \frac{k!}{p^{k+1}}$ и теорему запаздывания, находим

$$Y(p) \leftrightarrow y(t) = \sum_{k=0}^{\infty} \frac{(t-k)^k}{k!} e^{-2(t-k)} \chi(t-k).$$

Решением поставленной задачи будет функция x(t), которая является сверткой функций f(t) и y(t) :

$$x(t) = \sum_{k=0}^{\infty} \frac{1}{k!} \int_0^t f(t-\tau)(\tau-k)^k e^{-2(\tau-k)} \chi(\tau-k) d\tau.$$

Упражнения

Найдите решения уравнения, удовлетворяющие заданным условиям:

19.
$$x'(t) = x(t-1) + 1$$
, $x(0) = 0$.

20.
$$x''(t) - x(t-1) = t$$
, $x(0) = x'(0) = 0$.

21.
$$x''(t) + 2x'(t-2) + x(t-4) = t$$
, $x(0) = x'(0) = 0$.

22.
$$x'(t) = x(t-1), \quad x(t) = t$$
 для $t \in [-1; 0].$

23.
$$x'(t) + x(t - \frac{\pi}{2}) = 0$$
, $x(t) = \cos t$ для $t \in [-\frac{\pi}{2}; 0]$.

§5. Применение преобразования Лапласа к решению интегральных уравнений и их систем

<u>1. Уравнение Вольтерра второго рода.</u> Рассмотрим линейное интегральное уравнение Вольтерра второго рода с ядром K(t) вида

$$y(t) = f(t) + \int_0^t K(t - \tau)y(\tau) d\tau,$$
 (5.1)

где K(t), f(t) – заданные функции, y(t) – искомая.

Пусть $y(t) \leftrightarrow Y(p), f(t) \leftrightarrow F(p), K(t) \leftrightarrow K^{\star}(p)$. Переходя в уравнении (5.1) к изображениям и используя свойство изображения свертки, получим соответствующее операторное уравнение

$$Y(p) = F(P) + K^{\star}(p)Y(p).$$

Отсюда будем иметь

$$Y(p) = \frac{F(p)}{1 - K^{\star}(p)}.$$

Оригинал для изображения Y(p) есть искомое решение уравнения (5.1).

<u>2. Уравнение Вольтерра первого рода.</u> Рассмотрим линейное интегральное уравнение Вольтерра первого рода с ядром K(t) вида

$$\int_0^t K(t-\tau)y(\tau) d\tau = f(t), \tag{5.2}$$

где K(t), f(t) – заданные функции, y(t) – искомая.

Пусть $y(t) \leftrightarrow Y(p), f(t) \leftrightarrow F(p), K(t) \leftrightarrow K^{\star}(p)$. Тогда, применив преобразование Лапласа к уравнению (5.2), получим операторное уравнение

$$K^{\star}(p)Y(p) = F(p) \Rightarrow Y(P) = \frac{F(p)}{K^{\star}(p)}.$$

Оригинал для Y(p) дает искомое решение уравнения (5.2).

<u>3. Системы интегральных уравнений Вольтерра.</u> Рассмотрим систему интегральных уравнений Вольтерра вида:

$$y_i(t) = f_i(t) + \sum_{k=1}^{s} \int_0^t K_{ik}(t-\tau) y_k(\tau) d\tau, \quad i = \overline{1, s},$$
 (5.3)

где $f_i(t)$ и $K_{ik}(t)$ – заданные функции, $i,k=\overline{1,s}$. Пусть

$$F_i(p) \leftrightarrow f_i(t), \quad K_{ik}^{\star}(p) \leftrightarrow K_{ik}(t), \quad Y_i(p) \leftrightarrow y_i(t).$$

Применяя к обеим частям уравнений (5.3) преобразование Лапласа, получим систему операторных уравнений

$$Y_i(p) = F_i(p) + \sum_{k=1}^{s} K_{ik}^{\star}(p) Y_k(p), \quad i = \overline{1, s},$$
 (5.4)

линейную относительно изображений $Y_i(p)$. Решая систему (5.4), найдем $Y_i(p)(i=\overline{1,s})$, оригиналы для которых и будут решением исходной системы интегральных уравнений (5.3).

Пример 1. Решить интегральное уравнение:

$$y(x) = \sin x + \int_0^x (x - t) \cdot y(t) dt.$$

Решение. Пусть $y(x) \leftrightarrow Y(p)$. Так как интеграл, входящий в заданное уравнение, представляет собой свертку двух функций t и y(t), то его изображением будет произведение изображений этих функций, т.е. $\frac{1}{p^2}Y(p)$. Применив к уравнению преобразование Лапласа, получим следующее операторное уравнение:

$$Y(p) = \frac{1}{p^2 + 1} + \frac{1}{p^2}Y(p).$$

Его решение имеет вид:

$$Y(p) = \frac{p^2}{(p^2 - 1)(p^2 + 1)} = \frac{p}{p^2 - 1} \cdot \frac{p}{p^2 + 1}.$$

Так как

$$\frac{p}{p^2-1} \mathop{\leftrightarrow} \mathop{\mathrm{ch}} x; \quad \frac{p}{p^2+1} \mathop{\leftrightarrow} \mathop{\mathrm{cos}} x,$$

то соответствующий изображению Y(p) оригинал является сверткой двух функций — $\operatorname{ch} x$ и $\cos x$:

$$y(x) = \int_0^x ch(x-t)\cos t dt.$$

Вычислив интеграл, получим искомое решение.

Ответ: $y(x) = \frac{1}{2}\sin x + \frac{1}{4}e^x - \frac{1}{4}e^{-x}$.

Пример 2. Решить систему интегральных уравнений:

$$\begin{cases} y(x) & = e^x + \int_0^x y(t)dt - \int_0^x e^{(x-t)} z(t)dt, \\ z(x) & = -x - \int_0^x (x-t) \cdot y(t)dt + \int_0^x z(t)dt. \end{cases}$$

Решение. Пусть $y(x) \leftrightarrow Y(p)$, $z(x) \leftrightarrow Z(p)$. Применим к каждому уравнению системы преобразование Лапласа. Используя теорему об интегрировании оригинала и теорему о свертке для построения изображений интегралов уравнений, получим:

$$\left\{ \begin{array}{l} Y(p) = \frac{1}{p-1} + \frac{Y(p)}{p} - \frac{Z(p)}{p-1}, \\ Z(p) = -\frac{1}{p^2} + \frac{Y(p)}{p^2} + \frac{Z(p)}{p}. \end{array} \right.$$

Решая систему алгебраических уравнений, найдем изображения:

$$Y(p) = \frac{1}{p-2}, \quad Z(p) = -\frac{1}{p(p-2)} = \frac{1}{2} \left(\frac{1}{p} - \frac{1}{p-2} \right),$$

которым соответствуют оригиналы:

$$y(x) = e^{2x}, \quad z(x) = \frac{1}{2} - \frac{1}{2}e^{2x}.$$

Ответ: $y(x) = e^{2x}, \ z(x) = \frac{1}{2} - \frac{1}{2}e^{2x}.$

Пример 3. Решить интегро-дифференциальное уравнение:

$$y''(x) + 2 \cdot y'(x) - 2 \cdot \int_0^x \sin(x - t) \cdot y'(t) dt = \cos x, \quad y(0) = y'(0) = 0.$$

Решение.> Пусть $y(x) \leftrightarrow Y(p)$. Применим к заданному уравнению преобразование Лапласа:

$$p^{2}Y(p) + 2pY(p) - 2\frac{1}{p^{2} + 1}pY(p) = \frac{p}{p^{2} + 1}.$$

Решив уравнение относительно Y(p), получим:

$$Y(p) = \frac{1}{p(p+1)^2} = \frac{1}{p} - \frac{1}{(p+1)^2} - \frac{1}{p+1} \leftrightarrow y(x) = 1 - e^{-x}x - e^{-x}.$$

Ответ: $y(x) = 1 - e^{-x}x - e^{-x}$.

Пример 4. Решить интегро-дифференциальное уравнение:

$$y''(x) - 2 \cdot y'(x) + y(x) + 2 \cdot \int_{0}^{x} \cos(x - t) \cdot y''(t) dt + 2 \cdot \int_{0}^{x} \sin(x - t) \cdot y'(t) dt = \cos x, \quad y(0) = y'(0) = 0.$$

Решение. \triangleright Пусть $y(x) \leftrightarrow Y(p)$. Применив к заданному уравнению преобразование Лапласа, получим:

$$p^{2}Y(p) - 2pY(p) + Y(p) + 2\frac{p}{p^{2} + 1}p^{2}Y(p) + \frac{2}{p^{2} + 1}pY(p) = \frac{p}{p^{2} + 1}.$$

Решив уравнение относительно Y(p), будем иметь:

$$Y(p) = \frac{p}{p^2 + 1} \cdot \frac{1}{p^2 + 1} \leftrightarrow y(x) = \int_0^x \cos(x - t) \cdot \sin t \, dt = \frac{x}{2} \sin x.$$

При переходе к оригиналу было использовано свойство изображения свертки.

Ответ: $y(x) = \frac{x}{2}\sin x$.

Упражнения

24. Решите следующие уравнения:

1)
$$y(x) = \sin 2x - \frac{8}{3} \int_0^x \sin 3(x-t) \cdot y(t) dt$$
,

2)
$$y(x) = \cos x + \int_0^x (x - t) \cdot y(t) dt$$
,

3)
$$y(x) = x + \frac{1}{2} \cdot \int_0^x (x-t)^2 \cdot y(t) dt$$
,

4)
$$y(x) = x + \int_0^x \sin(x - t) \cdot y(t) dt$$
,

5)
$$y(x) = \cos x + \int_0^x e^{x-t} \cdot y(t) dt$$
,

6)
$$y(x) = 1 + x + \int_0^x \cos(x - t) \cdot y(t) dt$$
,

7)
$$y(x) = e^{-x} + \frac{1}{2} \int_0^x (x-t)^2 \cdot y(t) dt$$
,

8)
$$y(x) = x + 2 \cdot \int_0^x (x - t + \sin(t - x)) \cdot y(t) dt$$

9)
$$y(x) = 1 - 2x - 4x^2 + \int_0^x (3 + 6(x - t) - 4(x - t)^2) \cdot y(t) dt$$

10)
$$y(x) = 1 + \frac{1}{6} \int_0^x (x - t)^3 \cdot y(t) dt$$
,

11)
$$\sin^2 x = \int_0^x \sin(x-t)y(t) dt$$
.

25. Решите системы интегральных уравнений:

1)
$$\begin{cases} y_1(x) = 1 - 2 \cdot \int_0^x e^{2(x-t)} \cdot y_1(t) \, dt + \int_0^x y_2(t) \, dt, \\ y_2(x) = 4x - \int_0^x y_1(t) \, dt + 4 \cdot \int_0^x (x-t) \cdot y_2(t) \, dt; \end{cases}$$

2)
$$\begin{cases} y_1(x) = f(x) + \int_0^x y_2(t) dt, \\ y_2(x) = g(x) + \int_0^x \cos(x - t) \cdot y_1(t) dt, \end{cases}$$

где $f(x),\ g(x)$ – заданные функции, которые являются оригиналами;

3)
$$\begin{cases} y_1(x) = 2 - \int_0^x (x-t) \cdot y_1(t) \, dt - 4 \cdot \int_0^x y_2(t) \, dt, \\ y_2(x) = 1 - \int_0^x y_1(t) \, dt - \int_0^x (x-t) \cdot y_2(t) \, dt. \end{cases}$$

26. Найдите решения интегро-дифференциальных уравнений, удовлетворяющие заданным условиям:

1)
$$y''(x) - 2 \cdot y'(x) + y(x) + 2 \cdot \int_0^x \cos(x - t) \cdot y''(t) dt + 2 \cdot \int_0^x \sin(x - t) \cdot y'(t) dt = \cos x, \quad y(0) = y'(0) = 0;$$

2)
$$y''(x) - y(x) - 4 \cdot \int_0^x (x - t) \cos(x - t) \cdot y(t) dt = 0,$$

 $y(0) = 4, \ y'(0) = 0;$

3)
$$y''(x) + y(x) + \int_0^x \sinh(x-t) \cdot y(t) dt + \int_0^x \cosh(x-t) \cdot y'(t) dt = \cosh x$$
,

a)
$$y(0) = y'(0) = 0;$$

6)
$$y(0) = -1, y'(0) = 1.$$

Глава II.

Классификация уравнений с частными производными. Канонический вид уравнений с частными производными второго порядка

§1. Дифференциальные уравнения с частными производными

Обозначим через D область n-мерного пространства R^n точек $x=(x_1,\dots,x_n),\quad x_1,x_2,\dots,x_n,\ n\geq 2$ – декартовы координаты точки x. Уравнение вида

$$F\left(x, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial^k u}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}, \dots, \frac{\partial^m u}{\partial x_n^m}\right) = 0, \quad x \in D,$$

$$\sum_{i=1}^n i_j = k, \ k = 0, 1 \dots, m, \ m \ge 1$$

$$(1.1)$$

называется дифференциальным уравнением с частными производными порядка m относительно неизвестной функции u=u(x), где $F=F(x,u,\frac{\partial u}{\partial x_1},\ldots)$ – заданная действительная функция точек $x\in D$, неизвестной функции u и ее частных производных. Левая часть равенства (1.1) называется дифференциальным оператором c частными производными порядка m.

Действительная функция $u = u(x_1, x_2, \ldots, x_n)$, определенная в области D задания уравнения (1.1), непрерывная вместе со своими частными производными, входящими в это уравнение, и обращающая его в тождество, называется классическим (регулярным) решением уравнения (1.1).

Уравнение (1.1) называется линейным, если F линейно зависит от всех переменных вида $\frac{\partial^k u}{\partial x_1^{i_1}...\partial x_n^{i_n}}, \quad 0 \leq k \leq m.$

Линейное уравнение можно записать в виде

$$\sum_{k=0}^{m} \sum_{i_1, \dots, i_n} a_{i_1 \dots i_n}(x) \frac{\partial^k u}{\partial x_1^{i_1} \dots \partial x_n^{i_n}} = f(x), \quad \sum_{j=1}^{n} i_j = k, \ x \in D$$
 (1.2)

или в виде

$$Lu = f(x), \quad x \in D, \tag{1.3}$$

где

$$L \equiv \sum_{k=0}^{m} \sum_{i_1,\dots,i_n} a_{i_1\dots i_n}(x) \frac{\partial^k}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}, \quad \sum_{j=1}^n i_j = k,$$

– линейный дифференциальный оператор порядка т.

Линейное уравнение называется однородным, если $f(x) \equiv 0$, и неоднородным, если $f(x) \not\equiv 0$.

Уравнение (1.1) порядка m называется κ вазилинейным, если F линейно зависит лишь от частных производных порядка m:

$$\frac{\partial^m u}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}, \quad \sum_{j=1}^n i_j = m.$$

В дальнейшем при указании частной производной функции u будем использовать эквивалентные записи:

$$\frac{\partial u}{\partial x} \equiv u_x, \quad \frac{\partial^2 u}{\partial x^2} \equiv u_{xx}, \quad \frac{\partial^2 u}{\partial x \partial y} \equiv u_{xy}.$$

Упражнения

- 1. Выясните, являются ли приведенные ниже равенства дифференциальными уравнениями с частными производными:
 - 1) $\cos(u_x + u_y) \cos u_x \cdot \cos u_y + \sin u_x \cdot \sin u_y = 0;$
 - 2) $u_{xx}^2 + u_{yy}^2 (u_{xx} u_{yy})^2 = 0$;
 - 3) $\sin^2(u_{xx} + u_{xy}) + \cos^2(u_{xx} + u_{xy}) u = 1;$
 - 4) $\sin(u_{xy} + u_x) \sin u_{xy} \cdot \cos u_x \cos u_{xy} \cdot \sin u_x + 2u = 0;$
 - 5) $\frac{\partial}{\partial x} \operatorname{tg} u u_x \cdot \sec^2 u 3u + 2 = 0;$
 - 6) $\ln |u_x \cdot u_y| \ln |u_y| \ln |u_x| + 5u 6 = 0.$
- 2. Определите порядок уравнений:
 - 1) $u_x \cdot u_{xy}^2 + (u_{xx}^2 2u_{xy} + u_y)^2 2xy = 0;$
 - 2) $\cos^2 u_{xy} + \sin^2 u_{xy} 2u_x^2 3u_y + u = 0;$

3)
$$2(u_x - 2u)u_{xy} - \frac{\partial}{\partial y}(u_x - 2u)^2 - xy = 0.$$

- Выясните, какие из следующих уравнений являются линейными (однородными и неоднородными) и какие нелинейными (квазилинейными):
 - 1) $u_x \cdot u_{xy}^2 + 2x \cdot u \cdot u_{yy} 3xy \cdot u_y u = 0;$
 - 2) $u_y \cdot u_{xx} 3x^2 \cdot u \cdot u_{xy} + 2u_x f(x, y) \cdot u = 0;$
 - 3) $2 \cdot \sin(x+y) \cdot u_{xx} x \cdot \cos y \cdot u_{xy} + xy \cdot u_x 3u + 1 = 0;$
 - 4) $x^2 \cdot y \cdot u_{xxy} + 2e^x \cdot y^2 \cdot u_{xy} (x^2y^2 + 1) \cdot u_{xx} 2u = 0;$
 - 5) $3u_{xy} 6u_{xx} + 7u_y u_x + 8x = 0$;
 - 6) $u_{xy} \cdot u_{xx} 3u_{yy} 6x \cdot u_y + xy \cdot u = 0;$
 - 7) $a(x, y, u_x, u_{xy}) \cdot u_{xyy} + b(x, y, u_{yy}) \cdot u_{yyy} + 2u \cdot u_{xy}^2 f(x, y) = 0;$
 - 8) $u_{xy} + u_y + u^2 xy = 0$;
 - 9) $u_{xy} + 2 \cdot \frac{\partial}{\partial x}(u_x^2 + u) 6x \cdot \sin y = 0;$
 - 10) $2x \cdot u_{xy} 6 \cdot \frac{\partial}{\partial x} (u^2 xy) + u_{yy} = 0;$
 - 11) $\frac{\partial}{\partial y}(y \cdot u_y + u_x^2) 2u_x \cdot u_{xy} + u_x 6u = 0.$

§2. Простейшие дифференциальные уравнения с частными производными. Общее решение

Иногда уравнение удается преобразовать введением новых независимых переменных и новой искомой функции таким образом, что его общее решение можно построить в явной форме.

Например, рассмотрим уравнение

$$\alpha(x)\frac{\partial}{\partial x}\left(\gamma(y)\frac{\partial u}{\partial y}+\delta(y)u\right)+\beta(x)\left(\gamma(y)\frac{\partial u}{\partial y}+\delta(y)u\right)=0. \tag{2.1}$$

Обозначив

$$\gamma(y)\frac{\partial u}{\partial y} + \delta(y)u = v, \tag{2.2}$$

запишем уравнение (2.1) в виде

$$\alpha(x)\frac{\partial v}{\partial x} + \beta(x)v = 0. \tag{2.3}$$

Полученное уравнение можно рассматривать как обыкновенное линейное дифференциальное уравнение относительно v и x. Интегрируя его, найдем

$$v = \tilde{c}_1(y)e^{-\int \frac{\beta(x)}{\alpha(x)} dx}, \tag{2.4}$$

где $\tilde{c}_1(y)$ – произвольная функция от y, рассматриваемого как параметр. Подставляя в (2.2) выражение для v и рассматривая теперь x как параметр, будем иметь обыкновенное линейное дифференциальное уравнение относительно u и y, общее решение которого имеет вид:

$$u(x,y) = e^{-\int \frac{\delta(y)}{\gamma(y)} dy} \left\{ c_2(x) + \int \frac{1}{\gamma(y)} \tilde{c}_1(y) e^{\int \frac{\delta(y)}{\gamma(y)} dy} \cdot e^{-\int \frac{\beta(x)}{\alpha(x)} dx} dy \right\}.$$

В силу произвольности функции $\tilde{c}_1(y)$, введя обозначение

$$\int \frac{1}{\gamma(y)} \tilde{c}_1(y) e^{\int \frac{\delta(y)}{\gamma(y)} dy} dy \equiv c_1(y),$$

общее решение уравнения (2.1), зависящее от двух произвольных функций – $c_1(y)$, $c_2(x)$, можно переписать в виде:

$$u(x,y) = \left(c_2(x) + c_1(y)e^{-\int \frac{\beta(x)}{\alpha(x)}dx}\right) \cdot e^{-\int \frac{\delta(y)}{\gamma(y)}dy}.$$

Замечание. Учитывая свойства интегралов, в дальнейшем при записи выражений будем указывать явно пределы интегрирования, полагая верхний предел переменным, а нижний – равным 0. Такое представление удобно использовать при выделении из общего решения функции, удовлетворяющей заданным начальным условиям (см. пример 7).

Пример 1. Считая u = u(x, y, z), построить общее решение уравнений:

1)
$$u_x = 0;$$
 2) $u_z = (x + e^y)z.$

Решение. \triangleright 1) Решением уравнения является произвольная функция, не зависящая от переменной x: u(x,y,z) = F(y,z).

2) Интегрируя правую и левую часть заданного уравнения по переменной z, получаем его общее решение в виде

$$u(x, y, z) = \frac{1}{2}(x + e^y)z^2 + F(x, y),$$

где F – произвольная функция переменных x,y, рассматриваемых при интегрировании уравнения как параметры. \triangleleft

Пример 2. Найти общее решение уравнения:

$$u_x + u = f(x, y) \tag{A1}$$

Решение. Рассматривая уравнение (A1) как обыкновенное неоднородное дифференциальное уравнение с параметром y, найдем вначале общее решение соответствующего однородного уравнения. Оно будет иметь вид:

$$u(x,y) = v(y) \cdot e^{-x}.$$

А затем для построения решения заданного неоднородного уравнения применим метод вариации. Будем искать его общее решение в виде:

$$u(x,y) = v(x,y) \cdot e^{-x}. (A2)$$

Подстановка выражения (А2) в уравнение (А1) дает:

$$v_x = e^x f(x, y).$$

Интегрируя полученное уравнение, находим

$$v(x,y) = \int_0^x e^{\xi} f(\xi, y) d\xi + \varphi(y),$$

где φ – произвольная непрерывно дифференцируемая функция. Учитывая равенство (A2), получаем общее решение заданного уравнения.

Otbet:
$$u(x,y) = e^{-x} \left\{ \varphi(y) + \int_0^x e^{\xi} f(\xi,y) \, d\xi \right\}. \triangleleft$$

Пример 3. Построить общее решение уравнения:

$$x^2 u_{xy} + 2x u_y = 0, \quad x \neq 0.$$

Решение.⊳ Заданное уравнение можно привести к виду:

$$\frac{\partial}{\partial x} \left(x^2 u_y \right) = 0.$$

Проинтегрируем уравнение по переменной x, рассматривая переменную y как параметр. В результате получим уравнение:

$$x^2 u_y = \tilde{C}_1(y),$$

где $\tilde{C}_1(y)$ – произвольная функция от y. Интегрируя полученное уравнение по переменной y, когда x рассматривается как параметр, найдем

$$u(x,y) = \frac{1}{x^2} \int \tilde{C}(y) dy + C_2(x).$$

В силу произвольности функции $\tilde{C}_1(y)$, вводя для интеграла от нее новое обозначение $C_1(y)$, общее решение заданного уравнения, зависящее от произвольных непрерывно дифференцируемых функций $C_1(y)$ и $C_2(x)$, запишем в виде:

$$u(x,y) = \frac{1}{x^2}C_1(y) + C_2(x).$$

Замечание. Введя новую функцию $v=u_y$, можно понизить порядок уравнения. При этом предполагается, что функция u непрерывно дифференцируема достаточное число раз и допустимо изменение порядка дифференцирования. Такой прием решения уравнения использован в следующем примере.

Пример 4. Найти общее решение уравнения:

$$u_{xy} + xu_x - u + \cos y = 0.$$

Решение. Заметим, что неоднородный член уравнения функция $\cos y$ не зависит от переменной x, а поэтому если выполнить замену $v=u-\cos y$, то можно избавиться от неоднородности в уравнении. Таким образом, будем искать решение в виде:

$$u(x,y) = v(x,y) + \cos y. \tag{A1}$$

Подставляя выражение (A1) в заданное <u>неоднородное</u> уравнение, получим однородное уравнение для функции \overline{v} :

$$v_{xy} + xv_x - v = 0. (A2)$$

Введя обозначение

$$w = v_x, \tag{A3}$$

уравнение (А2) приведем к виду:

$$w_y + xw - v = 0. (A4)$$

Выражая из последнего равенства функцию v :

$$v = w_y + xw \tag{A5}$$

и подставляя ее затем в равенство (А3), получим уравнение:

$$w_{xy} + xw_x = 0. (A6)$$

Обозначив через $p = w_x$, уравнение (A6) приведем к виду:

$$p_y + xp = 0.$$

Рассматривая полученное уравнение как обыкновенное дифференциальное уравнение первого порядка относительно p и y (x – параметр), построим его общее решение в виде:

$$p(x,y) = \psi(x)e^{-xy},\tag{A7}$$

где ψ — произвольная функция. Тогда для функции w получаем уравнение:

$$w_x = \psi(x)e^{-xy},$$

интегрируя которое, находим:

$$w(x,y) = \int_0^x \psi(\xi)e^{-y\xi} d\xi + \varphi(y),$$

где φ — произвольная функция. Подставим найденное выражение для функции w в равенство (A5) и применим правило дифференцирования интеграла, зависящего от параметра:

$$v(x,y) = \frac{\partial}{\partial y} \left(\int_0^x \psi(\xi) e^{-y\xi} d\xi + \varphi(y) \right) + x \int_0^x \psi(\xi) e^{-y\xi} d\xi + x \varphi(y) =$$
$$= \int_0^x (-\xi) \psi(\xi) e^{-y\xi} d\xi + \varphi'(y) + x \int_0^x \psi(\xi) e^{-y\xi} d\xi + x \varphi(y).$$

Таким образом, общее решение уравнения (А2) имеет вид:

$$v(x,y) = \int_0^x (x-\xi)\psi(\xi)e^{-y\xi} d\xi + x\varphi(y) + \varphi'(y),$$

где φ, ψ – произвольные непрерывно дифференцируемые функции. Подставив найденное выражение для v в равенство (A1), получим общее решение заданного уравнения.

Ответ:
$$u(x,y) = \cos y + x\varphi(y) + \varphi'(y) + \int_0^x (x-\xi)\psi(\xi)e^{-y\xi} d\xi$$
.

Пример 5. Найти общее решение уравнения

$$\frac{\partial}{\partial y}(u_x + u) + x(u_x + u) + x^2y = 0.$$

Решение.⊳ Введя обозначение

$$v = u_x + u, (*)$$

заданное уравнение приведем к виду:

$$v_u + xv = -x^2y.$$

Рассматривая полученное неоднородное уравнение как обыкновенное дифференциальное уравнение, в котором x играет роль параметра, построим его общее решение в виде суммы общего решения соответствующего однородного уравнения $v_o(x,y)$ и частного решения неоднородного уравнения $\bar{v}(x,y)$:

$$v(x,y) = v_o(x,y) + \bar{v}(x,y) = \psi(x)e^{-xy} + \bar{v}(x,y).$$

Здесь ψ – произвольная непрерывно дифференцируемая функция. Если искать частное решение в виде функции, линейной относительно y, то нетрудно установить, что

$$\bar{v} = 1 - xy$$
.

Таким образом, учитывая обозначение (*), получаем уравнение:

$$u_x + u = 1 - xy + \psi(x)e^{-xy}.$$

Его решение можно построить, используя результат примера 2, заменяя в нем функцию f(x,y) правой частью полученного уравнения. Общее решение заданного уравнения будет иметь вид:

$$u(x,y) = (y+1)(1-e^{-x}) - yx + e^{-x} \left\{ \varphi(y) + \int_0^x \psi(\xi)e^{\xi(1-y)} d\xi \right\},\,$$

где φ, ψ – произвольные непрерывно дифференцируемые функции. \triangleleft

Пример 6. Для функции u = u(x, y, z) найти решение уравнения:

$$u_x + 2yu = xu^2.$$

Решение.> Выполнив замену $u=\frac{1}{v}$, заданное уравнение приведем к виду

$$v_x - 2yv = -x.$$

Рассматривая полученное уравнение как обыкновенное дифференци-

альное уравнение, в котором две переменные y и z играют роль параметров, построим его общее решение в виде:

$$v(x, y, z) = \varphi(y, z)e^{2yx} + \frac{2yx + 1}{4y^2},$$

где функция φ является произвольной и ее список аргументов определяется набором переменных-параметров. Выполняя обратную замену, получим общее решение заданного уравнения

$$u(x, y, z) = \frac{4y^2}{1 + 2yx + 4y^2\varphi(y, z)e^{2yx}}. \triangleleft$$

Пример 7. Найти решение уравнения $u_y = f(x, y)$, удовлетворяющее условию: $u(x, x^2) = 1$.

Решение.⊳ Общее решение уравнения имеет вид:

$$u(x,y) = \int_0^y f(x,\eta) \, d\eta + \varphi(x), \tag{*}$$

где φ – произвольная функция. Тогда для функции u, используя заданное условие, будем иметь:

$$u(x, x^2) = \int_0^{x^2} f(x, \eta) d\eta + \varphi(x) = 1.$$

Откуда следует вид функции φ :

$$\varphi(x) = 1 - \int_0^{x^2} f(x, \eta) \, d\eta,$$

подстановка которого в выражение (*) дает искомое решение:

$$u(x,y) = \int_0^y f(x,\eta) \, d\eta - \int_0^{x^2} f(x,\eta) \, d\eta + 1 = \int_{x^2}^y f(x,\eta) \, d\eta + 1. \quad \triangleleft$$

Упражнения

- **4.** Найдите u_x , если $u(x,y) = x \cdot y \cdot \frac{x^2 y^2}{x^2 + y^2}$.
- **5.** Найдите u_{xx}, u_{yy}, u_{xy} для $u(x, y) = x^y$.

6. Найдите общее решение u = u(x, y) для следующих уравнений:

1)
$$u_x = 0;$$
 2) $u_x = f(y), f(y) = \ln y;$

3)
$$u_x = f(x), f(x) = 1/x;$$
 4) $u_x = f(x, y), f(x, y) = \cos(xy);$

5)
$$u_{xx} = 0$$
; 6) $u_{xx} = f(x)$; 7) $u_{xx} = f(y)$;

8)
$$u_{xx} = f(x, y), f(x, y) = x \cdot \sin(xy);$$

9)
$$u_{xy} = 0;$$
 10) $u_{xy} = f(x), f(x) = \cos^2 4x;$

11)
$$u_{xy} = f(y), f(y) = (\sin \frac{y}{2} - y) \cdot \sin y;$$

12)
$$u_{xy} = f(x, y), \ f(x, y) = x + \frac{1}{y}.$$

7. Найдите общее решение u = u(x, y) для следующих уравнений:

1)
$$x \cdot u_{xy} + u_y = 0;$$
 2) $u_{xy} + u_y = 0;$

3)
$$u_{xy} + 5u_x = y^2 \cdot x$$
; 4) $x \cdot u_{xx} + u_x = y$;

5)
$$u_{xy} + \frac{1}{6} \cdot u_x = 0;$$
 6) $x \cdot u_{xx} + u_x = 0;$

7)
$$u_{yy} + \frac{1}{y} \cdot u_y = 0;$$
 8) $u_{xy} - \frac{1}{2x} \cdot u_y = 0.$

8. Найдите общее решение u = u(x,y) для следующих уравнений:

1)
$$u_x + \alpha(y)u = f(x, y);$$

2)
$$u_y + \alpha(x, y)u = f(x, y);$$

$$3) \quad u_{xy} + yu_y - u = 0;$$

4)
$$\operatorname{ch} x \cdot u_{xy} + (\operatorname{sh} x + y \operatorname{ch} x)u_y - \operatorname{ch} x \cdot u = 0;$$

5)
$$\frac{\partial}{\partial y}(u_x + u) + 2x^2y(u_x + u) = 0.$$

9. Найти решение уравнения $u_{xx} = f(x,y)$, удовлетворяющее условиям: $u(0,y) = \sin y$, u(y,y) = y.

§3. Дифференциальные уравнения с частными производными первого порядка

Линейным однородным уравнением первого порядка с частными производными называется уравнение

$$\sum_{i=1}^{n} a_i(x) \cdot \frac{\partial u}{\partial x_i} = 0, \tag{3.1}$$

где $a_i(x)$ – заданные функции, определенные в некоторой области $D\subset R^n$, u=u(x) – искомая функция, $x=(x_1,\ldots,x_n)$.

Решением уравнения (3.1) будем называть любую функцию, обладающую частными производными по аргументам x_1, x_2, \ldots, x_n , которая обращает (3.1) в тождество. Геометрически решение можно интерпретировать как поверхность в пространстве переменных x_1, x_2, \ldots, x_n, u . Будем называть эту поверхность интегральной поверхностью.

Система обыкновенных дифференциальных уравнений

$$\frac{dx}{dt} = a(x), \quad x = (x_1, \dots, x_n), \quad a = (a_1, \dots, a_n)$$
 (3.2)

называется системой уравнений характеристик для уравнения с частными производными (3.1), а ее фазовые кривые – характеристиками. Систему (3.2) называют системой характеристик в параметрической форме. Исключая параметр t, систему (3.2) приводят к симметричной форме:

$$\frac{dx_1}{a_1} = \frac{dx_2}{a_2} = \dots = \frac{dx_n}{a_n}. (3.3)$$

Теорема. Функция $u = u(x_1, ..., x_n)$ является решением линейного уравнения (3.1) тогда и только тогда, когда она является первым интегралом системы уравнений характеристик (3.2).

Если найдены n-1 независимые в области D первые интегралы системы уравнений характеристик (3.2) (или (3.3))

$$\psi_i(x_1, \dots, x_n) = c_i, \quad i = \overline{1, n-1}, \tag{3.4}$$

то общее решение уравнения (3.1) записывается в виде

$$u = \Phi(\psi_1, \dots, \psi_{n-1}), \tag{3.5}$$

где Ф – произвольная дифференцируемая функция.

Линейным неоднородным уравнением первого порядка с частными производными называется уравнение

$$\sum_{i=1}^{n} a_i(x) \frac{\partial u}{\partial x_i} = b(x), \quad x = (x_1, \dots, x_n), \tag{3.6}$$

где $a_i(x), b(x)$ – заданные функции.

Квазилинейным уравнением первого порядка называется уравнение

$$\sum_{i=1}^{n} a_i(x, u) \frac{\partial u}{\partial x_i} = b(x, u), \tag{3.7}$$

где $a_i(x,u), b(x,u)$ – функции, определенные в некоторой области переменных (x,u). Уравнение (3.7) отличается от линейного тем, что в нем коэффициенты a_i и b могут зависеть от неизвестной функции u=u(x). Уравнения характеристик для квазилинейного уравнения (3.7) имеют вид:

1) в параметрической форме

$$\begin{cases}
\frac{dx_i}{dt} = a_i(x, u), & i = \overline{1, n}, \\
\frac{du}{dt} = b(x, u);
\end{cases}$$
(3.8)

2) в симметричной форме

$$\frac{dx_1}{a_1} = \frac{dx_2}{a_2} = \dots = \frac{dx_n}{a_n} = \frac{du}{b}.$$
 (3.9)

Если найдены n первых независимых интегралов уравнений характеристик (3.8) (или (3.9))

$$\psi_i(x, u) = c_i, \quad i = \overline{1, n}, \tag{3.10}$$

то все решения уравнения (3.7) определяются из равенства

$$\Phi(\psi_1, \psi_2, \dots, \psi_n) = 0,$$

где Ф – произвольная дифференцируемая функция.

 $3a\partial a$ чей Komu для уравнения (3.1) (аналогично (3.6) или (3.7)) называется задача о нахождении решения u=u(x) этого уравнения, удовлетворяющего на некоторой заданной гладкой гиперповерхности γ

в D условию

$$u(x)|_{x \in \gamma} = \phi(x),$$

где $\phi(x)$ – заданная гладкая функция на гиперповерхности γ . Поверхность γ называют начальной гиперповерхностью, а функцию $\phi(x)$ – начальным условием.

Если задано семейство поверхностей F(x) = c = const, то поверхность $u(x) = c_1 = const$ пересекает эти поверхности под прямым углом тогда и только тогда, когда

$$(\operatorname{grad} F, \operatorname{grad} u) = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i} \frac{\partial u}{\partial x_i} = 0.$$

Пример 1. Вводя новые независимые переменные $\xi = x$ и $\eta = \frac{y}{x}$, решить уравнение: $xu_x + yu_y = u$.

Решение. Введем обозначение v для неизвестной функции при переходе к новым независимым переменным ξ и η :

$$v(\xi, \eta) = v(x, \frac{y}{x}) = u(x, y). \tag{*}$$

Так как для производных u_x и u_y имеем следующие выражения в новых переменных:

$$u_x = v_\xi - \frac{y}{x^2}v_\eta, \quad u_y = \frac{1}{x}v_\eta,$$

то их подстановка в заданное уравнение приводит его к виду: $xv_{\xi}=v$. Учитывая замену $\xi=x$, получим уравнение

$$\xi v_{\varepsilon} = v$$
,

общее решение которого имеет вид:

$$v(\xi, \eta) = \xi \varphi(\eta),$$

где φ — произвольная дифференцируемая функция. Тогда общее решение заданного уравнения, согласно замене (*), описывает функция:

$$u(x,y) = x\varphi\left(\frac{y}{x}\right)$$
. \triangleleft

Пример 2. Найти общее решение u=u(x,y) уравнения

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} = 0, \quad x \neq 0, \ y \neq 0.$$

Решение. > Составим уравнение характеристик в симметричной форме:

$$\frac{dx}{\frac{1}{x}} = \frac{dy}{\frac{1}{y}} \quad \text{или} \quad x \, dx = y \, dy.$$

Откуда находим один первый интеграл:

$$x^2 - y^2 = c,$$

который описывает семейство характеристик уравнения. Тогда общее решение заданного уравнения имеет вид:

$$u(x,y) = F(x^2 - y^2),$$

где F(z) – произвольная непрерывно дифференцируемая функция.

Ответ: $u(x,y) = F(x^2 - y^2)$.

Пример 3. Найти решение u = u(x, y) уравнения:

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = x - y,$$

удовлетворяющее условию: $u(1, y) = y + e^y$.

Решение.⊳ Составляем уравнения характеристик в симметричной форме:

$$\frac{dx}{x} = \frac{dy}{-y} = \frac{du}{x - y}.$$

Отсюда, решая систему обыкновенных дифференциальных уравнений:

$$\left\{ \begin{array}{l} \displaystyle \frac{dy}{dx} = -\frac{y}{x}, \\[0.2cm] \displaystyle \frac{du}{dx} = \frac{x-y}{x} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \displaystyle \frac{dy}{dx} = -\frac{y}{x}, \\[0.2cm] \displaystyle \frac{du}{dx} = 1 - \frac{y}{x} = 1 + \frac{dy}{dx}, \end{array} \right.$$

находим два первых интеграла:

$$xy = c_1$$
 и $u - y - x = c_2$.

Решение заданного уравнения записываем с помощью произвольной функции Φ в неявной форме:

$$\Phi(xy, u - x - y) = 0.$$

Разрешая последнее равенство относительно второго аргумента функции Φ , получим:

$$u(x,y) = y + x + F(xy), \tag{A1}$$

где F(z) – произвольная непрерывно дифференцируемая функция. Воспользуемся заданным условием, чтобы установить вид функции F:

$$u(1,y) = y + 1 + F(y) = y + e^{y}.$$

Откуда получаем

$$F(y) = e^y - 1. (A2)$$

И, следовательно, искомое решение имеет вид:

$$u(x,y) = y + x + e^{xy} - 1,$$

который получается заменой в (A1) функции F с фактическим аргументом xy ее установленным выражением (A2).

Ответ: $u(x,y) = y + x + e^{xy} - 1$.

Пример 4. В области x > 0, y > 0 найти решение уравнения

$$u_x + u_y = x + y,$$

удовлетворяющее условиям: u(0, y) = u(x, 0) = 1.

Решение.⊳ Составим уравнения характеристик в симметричной форме:

$$\frac{dx}{1} = \frac{dy}{1} = \frac{du}{x+y}.$$

Откуда находим два первых независимых интеграла:

$$x - y = c_1, \quad xy - u = c_2.$$

Следовательно, все решения заданного уравнения выражаются формулой:

$$\Phi(x - y, xy - u) = 0$$

с произвольной функцией Ф или

$$u(x,y) = xy + F(x - y),$$

где F(z) – произвольная непрерывно дифференцируемая функция. Используя заданные условия, получим соотношения:

$$1 = F(-y), \quad 1 = F(x),$$

которые позволяют однозначно установить вид функции $F: F(z) \equiv 1$. Таким образом, решением задачи является функция:

$$u(x,y) = xy + 1.$$

Ответ: u(x,y) = xy + 1. \triangleleft

Пример 5. Решить задачу Коши:

$$\sin y \cdot u_x + e^x \cdot u_y - 2x \sin y \cdot u = 0, \quad u(x,y)|_{e^x + \cos y = 1} = e^{x^2}.$$

Решение. Согласно введенной в параграфе классификации, заданное уравнение является квазилинейным. Начнем с построения его общего решения, найдя характеристики из системы уравнений:

$$\frac{dx}{\sin y} = \frac{dy}{e^x} = \frac{du}{2x\sin y \cdot u}.$$

Семейство характеристик описывается двумя первыми интегралами

$$e^x + \cos y = c_1$$
 и $u \cdot e^{-x^2} = c_2$.

Тогда общее решение заданного уравнения определяется формулой

$$\Phi(e^x + \cos y, ue^{-x^2}) = 0$$

или, разрешая это уравнение относительно второго аргумента, в виде

$$u(x,y) = e^{x^2} F(e^x + \cos y), \tag{A1}$$

где F = F(z) – произвольная непрерывно дифференцируемая функция. Подчиним функцию, определяемую выражением (A1), заданному условию:

$$u(x,y)|_{e^x + \cos y = 1} = e^{x^2} F(1) = e^{x^2}.$$

Полученное равенство будет верным, если F(1)=1. Таким образом, задача Коши имеет множество решений вида

$$u(x,y) = e^{x^2} F(e^x + \cos y),$$

где функция F(z) — произвольная функция, принимающая значение 1 при z=1. Такая неопределенность решения объясняется тем, что начальная кривая γ , задаваемая уравнением $e^x + \cos y = 1$, является одной из характеристик уравнения. \triangleleft

• Неизвестная функция, удовлетворяющая линейному дифференциальному уравнению первого порядка и заданным условиям, может быть найдена с помощью однократного или многократного преобразования Лапласа в зависимости от размерности пространства переменных и вида условий.

В первом случае преобразование применяют к уравнению в частных производных по одной из независимых переменных в предположении, что другие остаются неизменными. В результате получается операторное уравнение относительно изображения, которое в случае двух

независимых переменных является обыкновенным дифференциальным уравнением с параметром. После интегрирования операторного уравнения по найденному из него изображению находят оригинал как решение исходного уравнения.

Во втором случае преобразование Лапласа применяется последовательно, в результате получается уравнение, из которого находят "многократное" изображение искомой функции. С помощью обратных преобразований восстанавливается функция-оригинал.

Решение уравнения в частных производных, найденное с помощью многократного преобразования Лапласа, не зависит от того, в какой последовательности применялись прямые и обратные преобразования.

Удачно выбранный порядок в последовательности преобразований может значительно облегчить решение задачи восстановления оригинала по изображению.

Пример 6. В области $x>0,\;y>0$ с помощью преобразования Лапласа найти решение уравнения

$$u_x + u_y = x + y,$$

удовлетворяющее условиям: u(0,y) = u(x,0) = 1.

Решение. Применим к заданному уравнению преобразование Лапласа по переменной x, полагая $u(x,y) \leftrightarrow U(p,y)$. Так как

$$\begin{split} \frac{\partial u}{\partial x} & \leftrightarrow & pU(p,y) - u(0,y) = pU(p,y) - 1, \\ \frac{\partial u}{\partial y} & \leftrightarrow & \frac{\partial U(p,y)}{\partial y}, \\ u(x,0) &= 1 & \leftrightarrow & U(p,0) = \frac{1}{p}, \end{split}$$

то указанное преобразование дает операторное уравнение:

$$pU(p,y) - 1 + \frac{\partial U(p,y)}{\partial y} = \frac{1}{p^2} + \frac{y}{p},$$

к которому следует добавить условие: $U(p,0)=\frac{1}{p}$. Таким образом, однократное преобразование Лапласа по переменной x дает задачу:

$$\begin{cases} \frac{\partial U(p,y)}{\partial y} + pU(p,y) = \frac{1}{p^2} + \frac{y}{p} + 1, \quad y > 0, \\ U(p,0) = \frac{1}{p}. \end{cases}$$
 (A1)

Полученное уравнение можно рассматривать как обыкновенное неоднородное дифференциальное уравнение первого порядка с постоянными

коэффициентами для функции U, с независимой переменной y и параметром p. Решим задачу Коши (A1) двумя способами.

Во-первых, решая дифференциальное уравнение, можно построить его общее решение:

$$U(p,y) = Ce^{-py} + \frac{y}{p^2} + \frac{1}{p}$$

и выделить решение, удовлетворяющее заданному начальному условию:

$$U(p,y) = \frac{y}{p^2} + \frac{1}{p}.$$

Для найденного изображения легко построить соответствующий оригинал:

$$u(x,y) = yx + 1.$$

Второй способ предполагает решение задачи (A1) с помощью преобразования Лапласа относительно переменной y.

Полагая $U(p,y) \leftrightarrow V(p,q)$, построим операторное уравнение:

$$qV(p,q) - \frac{1}{p} + pV = \frac{1}{p^2q} + \frac{1}{pq^2} + \frac{1}{q},$$

откуда находим

$$V(p,q) = \frac{1}{pq} + \frac{1}{p^2 q^2}.$$

Выполняя обратные преобразования:

$$V(p,q) = \frac{1}{pq} + \frac{1}{p^2q^2} \leftrightarrow U(p,y) = \frac{1}{p} + \frac{1}{p^2}y \leftrightarrow u(x,y) = 1 + xy,$$

находим решение задачи, сформулированной в условии примера.

И первый способ – однократное преобразование Лапласа, и второй – двукратное преобразование Лапласа, дают один и тот же результат. Сравните его с решением примера 4. ⊲

Упражнения

Проверить, является ли решением уравнения

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$$

в области x > 0, y > 0, z > 0 функция $u = \frac{y}{x} \cdot e^{\frac{xz}{y^2}}$.

11. Доказать, что u(x,y) = x + y + f(xy), где f(z) – произвольная непрерывно дифференцируемая функция, является решением уравнения

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = x - y.$$

12. Доказать, что $u(x,y) = \sqrt{x^2 + y^2} \cdot f(\operatorname{arctg} \frac{y}{x} + \ln \sqrt{x^2 + y^2})$, где f(z) – непрерывно дифференцируемая функция, является решением уравнения

 $(x+y)\frac{\partial u}{\partial x} - (x-y)\frac{\partial u}{\partial y} = u.$

- 13. Принимая ξ и η за новые переменные, преобразуйте следующие уравнения:
 - 1) $xu_x + \sqrt{1+y^2} \cdot u_y = xy$, если $\xi = \ln x$, $\eta = \ln (y + \sqrt{1+y^2})$;
 - 2) $(x+y)u_x (x-y)u_y = 0$, если $\xi = \ln \sqrt{x^2 + y^2}$, $\eta = \arctan \frac{y}{x}$;
 - 3) $xu_x + yu_y = u + \sqrt{x^2 + y^2 + u^2}$. если $\xi = \frac{y}{x}$, $\eta = u + \sqrt{x^2 + y^2 + u^2}$.
- **14.** Постройте общее решение уравнений, u = u(x, y) :
 - 1) $y \cdot u_x x \cdot u_y = 0$;
- 5) $yu_x + xu_y = x^2 + y^2$:
- 2) $xu_x + yu_y = 1$:
- 6) $xyu_x + (x 2u)u_y = yu$:
- 3) $yu_x xu_y = y^2 x^2;$ 7) $\frac{1}{x}u_x + \frac{1}{y}u_y = \frac{u}{y^2}.$
- 4) $\frac{1}{\cos x} \cdot u_x + u_y = u \cdot \operatorname{ctg} y;$
- **15.** Постройте общее решение уравнений, u = u(x, y, z):
 - 1) $xu_x + yu_y + zu_z = 0$;
- 3) $x^2u_x + y^2u_y + z^2u_z = u$;

 $2) \quad u_x + u_y + u_z = xyz;$

4) $u_x + 2u_y + u_z = xyz$.

- **16.** Покажите, что уравнение $a(x,y)u_x + b(x,y)u_y + c(x,y)u = 0$, коэффициенты которого a и c удовлетворяют условию: $\frac{c(x,y)}{a(x,y)} = \lambda = const$, с помощью замены $u = e^{-\lambda x} \cdot v$ приводится к виду $a(x,y)v_x + b(x,y)v_y = 0$.
- **17.** Найдите решения u=u(x,y) уравнений, удовлетворяющие указанным условиям:
 - 1) $xu_x + yu_y = 1$, u(x, 1) = x;
 - 2) $yu_x xu_y = y^2 x^2$, $u(0,y) = \frac{1}{y^2}$;
 - 3) $xu_x + yu_y = 2xy$, $u(x, x) = x^2$;
 - 4) $xu\frac{\partial u}{\partial x} + yu\frac{\partial u}{\partial y} + xy = 0$, $u|_{xy=1} = 1$;
 - 5) $yu_x xu_y = y^2 x^2$, $u|_{xy=1} = \frac{y^2}{1 + y^4}$;
 - 6) $x^2u_x xyu_y = -y^2$, $u(x,x) = 1 + \frac{x}{3}$;
 - 7) $xu_x + yu_y = u xy$, $u(x, 2) = 1 + x^2$.
- **18.** Найдите решения u=u(x,y,z) уравнений, удовлетворяющие указанным условиям:
 - 1) $xu_x + yu_y + zu_z = 0$, $u(1, y, z) = y^2 + z^2$;
 - 2) $u_x + u_y + u_z = xyz$, u(0, y, z) = y z;
 - 3) $u_x + u_y + 2u_z = 0$, u(x, 1, z) = xz;
 - 4) $xu_x + 2yu_y + 3zu_z = 4u$, u(x, x, z) = z.
- **19.** Найдите поверхность u=u(x,y), удовлетворяющую уравнению $xu_x+yu_y=u-x^2-y^2$

и проходящую через параболу $u=x-x^2$, лежащую в плоскости y=-2.

- **20.** Найдите поверхность, проходящую через прямую x=y, z=1 и ортогональную поверхностям $x^2+y^2+z^2=Cy$, где C произвольная постоянная.
- **21.** С помощью преобразования Лапласа в области $0 < x < \infty, \ 0 <$

 $y<\infty$ найдите решения u=u(x,y) уравнений, удовлетворяющие заданным условиям:

- 1) $au_x + bu_y + cu = f(x, y), \quad a, b > 0,$ $u(0, y) = \psi(y), \quad u(x, 0) = \phi(x), \quad \phi(0) = \psi(0);$
- 2) $(x+y)u_x = u+y$, $u(0,y) = y^3 y$;
- 3) $u_x \cos x \cdot u_y = \cos x \cdot \cos y$, $u(x, 0) = \sin x$.

§4. Классификация линейных уравнений с частными производными второго порядка

Линейным уравнением с частными производными второго порядка называется уравнение вида:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} + cu = f(x), \quad x \in D,$$
 (4.1)

где коэффициенты являются действительными функциями точки x в области D

$$a_{ij} = a_{ij}(x), \quad b_i = b_i(x), \quad c = c(x).$$

Уравнению (4.1) ставится в соответствие характеристическая форма

$$Q(\lambda_1, \dots, \lambda_n) = \sum_{i,j=1}^n a_{ij} \lambda_i \lambda_j, \tag{4.2}$$

которая является квадратичной.

В каждой фиксированной точке $x \in D$ квадратичную форму Q при помощи неособого афинного преобразования переменных

$$\lambda_i = \lambda_i(\mu_1, \dots, \mu_n), \quad i = \overline{1, n},$$

можно привести к каноническому виду

$$\tilde{Q}(\mu_1, \dots, \mu_n) = \sum_{i=1}^n \alpha_i \mu_i^2,$$
(4.3)

где $\alpha_i \in \{-1; 0; 1\}.$

Канонический вид квадратичной формы определяет тип уравнения (4.1).

Линейное уравнение (4.1) будем называть эллиптическим в точке $x \in D$, если в каноническом виде квадратичной формы (4.3) с коэффициентами, вычисленными в точке $x \in D$, все $\alpha_i \neq 0$ и одного знака.

Уравнение (4.1) будем называть гиперболическим в точке $x \in D$, если в каноническом виде квадратичной формы (4.3) с коэффициентами, вычисленными в точке $x \in D$, все $\alpha_i \neq 0$, но не все одного знака.

Уравнение (4.1) будем называть *параболическим* в точке $x \in D$, если в каноническом виде квадратичной формы (4.3) с коэффициентами, вычисленными в точке $x \in D$, хотя бы один из коэффициентов $\alpha_k = 0$.

Пример 1. Определить тип уравнения для u = u(x, y):

$$u_{xx} - 4u_{xy} + 8u_{yy} + u_x - 6u + y = 0.$$

Решение. В Заданному уравнению соответствует квадратичная форма:

$$Q(\lambda_1, \lambda_2) = \lambda_1^2 - 4\lambda_1\lambda_2 + 8\lambda_2^2,$$

которую приведем к каноническому виду, последовательно выделяя полные квадраты:

$$Q(\lambda_1, \lambda_2) = \lambda_1^2 - 4\lambda_1\lambda_2 + 8\lambda_2^2 = \lambda_1^2 - 4\lambda_1\lambda_2 + 4\lambda_2^2 + 4\lambda_2^2 =$$
$$= (\lambda_1 - 2\lambda_2)^2 + (2\lambda_2)^2 = \mu_1^2 + \mu_2^2 = \bar{Q}(\mu_1, \mu_2).$$

Так как оба коэффициента в каноническом виде квадратичной формы имеют один знак, то заданное уравнение имеет эллиптический тип во всей области задания переменных x, y. \triangleleft

Пример 2. Определить тип уравнения для u = u(x, y, z):

$$u_{xx} - 4u_{yy} + 2u_{xz} + 4u_{yz} + 2u_x - u_y = xyz^2.$$

Решение. > Заданному уравнению соответствует квадратичная форма:

$$Q(\lambda_1, \lambda_2, \lambda_3) = \lambda_1^2 - 4\lambda_2^2 + 2\lambda_1\lambda_3 + 4\lambda_2\lambda_3.$$

Приведем ее к каноническому виду, последовательно выделяя полные квадраты:

$$Q(\lambda_1, \lambda_2, \lambda_2) = \lambda_1^2 + 2\lambda_1\lambda_3 + \lambda_3^2 - \lambda_3^2 - 4\lambda_2^2 + 4\lambda_2\lambda_3 =$$

$$= (\lambda_1 + \lambda_3)^2 - (2\lambda_2 - \lambda_3)^2 = \mu_1^2 - \mu_2^2 = \bar{Q}(\mu_1, \mu_2, \mu_3).$$

Так как один из коэффициентов в каноническом виде квадратичной формы равен 0 (при μ_3^2), то заданное уравнение имеет параболический тип во всей области задания переменных x, y, z. \triangleleft

Упражнения

Определите тип следующих уравнений:

22.
$$u_{xx} + 4u_{xy} + u_{yy} + u_x + u_y + 2u - x^2y = 0.$$

23.
$$2u_{xx} + 2u_{xy} + u_{yy} + 2u_x + 2u_y - u = 0.$$

24.
$$u_{xx} + 2u_{xy} + u_{yy} + u_x + u_y + 3u - xy^2 = 0.$$

25.
$$4u_{xx} + 2u_{yy} - 6u_{zz} + 6u_{xy} + 10u_{xz} + 4u_{yz} + 2u = 0.$$

26.
$$2u_{xy} - 2u_{xz} + 2u_{yz} + 3u_x - u = 0.$$

27.
$$u_{xx} + 2u_{xy} + 2u_{yy} + 4u_{yz} + 5u_{zz} - xu_x + yu_z = 0.$$

28.
$$u_{xx} - 4u_{xy} + 2u_{xz} + 4u_{yy} + u_{zz} - 2xyu_x + 3xu = 0.$$

29.
$$u_{xy} + u_{yz} + u_{xz} - 3x^2u_y + y\sin xu + xe^{-y} = 0.$$

30.
$$5u_{xx} + u_{yy} + 5u_{zz} + 4u_{xy} - 8u_{xz} - 4u_{yz} - u + yz^2 \sin x = 0.$$

31.
$$u_{xx} + 2u_{xy} + 2u_{yy} - 2u_{yz} + 3u_z - u = 0.$$

32.
$$3u_{xx} + 4u_{yy} + 5u_{zz} + 4u_{xy} - 4u_{yz} + 2u_x - u_y + xye^z = 0.$$

§5. Приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными

Для неизвестной функции с двумя независимыми переменными u(x,y) линейное уравнение с частными производными второго порядка может быть записано в виде

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0, (5.1)$$

где a,b,c – дважды непрерывно дифференцируемые функции. Уравнение (5.1) имеет в точке (x,y)

гиперболический тип, если $b^2 - ac > 0$, параболический тип, если $b^2 - ac = 0$, эллиптический тип, если $b^2 - ac < 0$.

Классификация уравнений (5.1) в точке (x,y) совпадает с классификацией соответствующих квадратичных форм:

$$Q(\lambda_1, \lambda_2) = a(x, y)\lambda_1^2 + 2b(x, y)\lambda_1\lambda_2 + c(x, y)\lambda_2^2.$$

В дальнейшем разность $b^2 - ac$ будем называть дискриминантом уравнения (5.1) (или дискриминантом квадратичной формы).

Множество точек плоскости, в которых сохраняется тип уравнения, определяют области параболичности, гиперболичности и эллиптичности уравнения (5.1).

Для того чтобы привести уравнение (5.1) к каноническому виду, нужно составить уравнение характеристик

$$a(dy)^{2} - 2bdxdy + c(dx)^{2} = 0, (5.2)$$

которое распадается на два уравнения:

$$ady - (b + \sqrt{b^2 - ac})dx = 0,$$
 (5.3)

$$ady - (b - \sqrt{b^2 - ac})dx = 0,$$
 (5.4)

и найти их общие интегралы.

• Обратите внимание на изменение знака, с которым коэффициент b входит в уравнение (5.1), при записи уравнения характеристик (5.2).

Уравнения гиперболического типа: $b^2 - ac > 0$.

Общие интегралы уравнений (5.3) и (5.4)

$$\phi(x,y) = c_1, \quad \psi(x,y) = c_2$$

будут вещественными и различными, c_1, c_2 – произвольные постоянные. Они определяют два различных семейства характеристик.

Введя новые независимые переменные ξ,η по правилу

$$\xi = \phi(x, y), \quad \eta = \psi(x, y),$$

приведем уравнение (5.1) к каноническому виду:

$$v_{\xi\eta} = F_1(\xi, \eta, v, v_{\xi}, v_{\eta}), \tag{5.5}$$

где

$$v(\xi, \eta) = v(\phi(x, y), \psi(x, y)) = u(x, y).$$

Если ввести новые переменные ξ и η по правилу

$$\xi = \frac{\phi(x,y) + \psi(x,y)}{2}, \quad \eta = \frac{\phi(x,y) - \psi(x,y)}{2},$$

для уравнения (5.1) получим еще один канонический вид уравнения гиперболического типа:

$$v_{\xi\xi} - v_{\eta\eta} = F_1(\xi, \eta, v, v_{\xi}, v_{\eta}). \tag{5.5'}$$

Уравнения параболического типа: $b^2 - ac = 0$.

Так как уравнения (5.3) и (5.4) совпадают, то для уравнения (5.2) имеем один общий интеграл

$$\phi(x,y) = c_1.$$

Введем новые независимые переменные ξ, η по правилу

$$\xi = \phi(x, y), \quad \eta = \eta(x, y),$$

где функцию $\eta = \eta(x,y)$ выбираем таким образом, чтобы якобиан преобразования

$$\frac{D(\xi,\eta)}{D(x,y)} = \left| \begin{array}{cc} \xi_x & \xi_y \\ \eta_x & \eta_y \end{array} \right| \neq 0$$

в рассматриваемой области. Уравнение (5.1) в новых переменных примет вид

$$v_{\eta\eta} = F_2(\xi, \eta, v, v_{\xi}, v_{\eta}).$$
 (5.6)

Это канонический вид уравнения параболического типа.

Уравнения эллиптического типа: $b^2 - ac < 0$.

Общие интегралы уравнений (5.3) и (5.4) – комплексно сопряженные, они определяют два семейства мнимых характеристик. Запишем общий интеграл уравнения (5.3) в виде

$$\phi(x,y) + i\psi(x,y) = c_1, \quad c_1 = const \in C,$$

где $\phi(x,y), \psi(x,y)$ – вещественные функции. Полагая

$$\xi = \phi(x, y), \quad \eta = \psi(x, y),$$

уравнение (5.1) приведем к каноническому виду:

$$v_{\xi\xi} + v_{\eta\eta} = F_3(\xi, \eta, v, v_{\xi}, v_{\eta}).$$
 (5.7)

При построении канонического вида уравнения используются формулы преобразования производных функции u(x,y), входящих в уравнение (5.1), к новым переменным:

$$\begin{split} u_x &= v_\xi \xi_x + v_\eta \eta_x, \\ u_y &= v_\xi \xi_y + v_\eta \eta_y, \\ u_{xx} &= v_\xi \xi_x^2 + 2 v_{\xi\eta} \xi_x \eta_x + v_{\eta\eta} \eta_x^2 + v_\xi \xi_{xx} + v_\eta \eta_{xx}, \\ u_{yy} &= v_\xi \xi_y^2 + 2 v_{\xi\eta} \xi_y \eta_y + v_{\eta\eta} \eta_y^2 + v_\xi \xi_{yy} + v_\eta \eta_{yy}, \\ u_{xy} &= v_\xi \xi_x \xi_y + v_{\xi\eta} (\xi_x \eta_y + \xi_y \eta_x) + v_{\eta\eta} \eta_x \eta_y + v_\xi \xi_{xy} + v_\eta \eta_{xy}. \end{split}$$

В случае когда коэффициенты уравнения (5.1) постоянны, после приведения уравнения к одному из видов (5.5), (5.6) или (5.7) можно выполнить дальнейшее упрощение. Так, например, введя новую неизвестную функцию $w(\xi,\eta)$ по формуле

$$v(\xi, \eta) = e^{\alpha \xi + \beta \eta} \cdot w(\xi, \eta),$$

подходящим подбором постоянных α и β можно преобразовать уравнения (5.5), (5.6), (5.7) так, чтобы в новом уравнении коэффициенты при первых производных функции w в эллиптическом и гиперболическом случаях и один из коэффициентов при первых производных функции w и коэффициент при самой функции w в параболическом случае отсутствовали.

Пример 1. Привести к каноническому виду уравнение:

$$u_{xx} + u_{xy} - 2u_{yy} - 3u_x - 15u_y + 27x = 0.$$

Решение.>

- 1. Дискриминант квадратичной формы равен: $\left(\frac{1}{2}\right)^2 1 \cdot (-2) = \frac{9}{4} > 0$. Следовательно, уравнение имеет гиперболический тип на всей плоскости.
- 2. Составим уравнение характеристик:

$$(dy)^2 - dy \cdot dx - 2(dx)^2 = 0.$$

Оно распадается на два уравнения:

$$dy + dx = 0 \quad \text{и} \quad dy - 2dx = 0,$$

решая которые найдем два первых интеграла: $y + x = c_1$, $y - 2x = c_2$. Характеристиками заданного уравнения будут функции:

$$\varphi_1 = y + x \quad \text{if} \quad \varphi_2 = y - 2x.$$

- 3. Выполним замену: $\xi = \varphi_1 = y + x, \, \eta = \varphi_2 = y 2x.$
- 4. Вычислим значения частных производных от функций ξ и η :

$$\xi_x = 1, \ \xi_y = 1, \ \eta_x = -2, \ \eta_y = 1,$$

$$\xi_{xx} = 0, \ \xi_{yy} = 0, \ \xi_{xy} = 0, \ \eta_{xx} = 0, \ \eta_{yy} = 0, \ \eta_{xy} = 0.$$

5. Построим выражения для производных функции u при переходе к новым переменным, указав слева от вертикальной черты коэффициенты, с которыми производные входят в заданное уравнение:

При такой записи легко определить коэффициенты, с которыми функция v и ее производные входят в преобразованное уравнение:

6. Построим выражение для неоднородного члена уравнения:

$$27x = 27 \cdot \frac{\xi - \eta}{3} = 9(\xi - \eta).$$

7. Подставляя построенные выражения в заданное уравнение, приведем его к каноническому виду:

$$-9v_{\xi\eta} - 18v_{\xi} - 9v_{\eta} + 9(\xi - \eta) = 0.$$

Ответ: $v_{\xi\eta} + 2v_{\xi} + v_{\eta} - \xi + \eta = 0$.

Пример 2. Привести к каноническому виду уравнение:

$$(1+x^2)^2 u_{xx} + u_{yy} + 2x(1+x^2)u_x = 0.$$

Решение.⊳

1. Дискриминант квадратичной формы равен:

$$b^2 - ca = 0^2 - 1 \cdot (1 + x^2)^2 = -(1 + x^2)^2$$
.

Это выражение меньше нуля при любых значениях x. Следовательно, уравнение имеет эллиптический тип.

2. Составим уравнение характеристик:

$$(1+x^2)^2(dy)^2 + (dx)^2 = 0,$$

которое равносильно двум следующим:

$$dy = \frac{-i}{1+x^2}dx$$
, $dy = \frac{i}{1+x^2}dx$.

Решив два последних уравнения, получим два комплексно сопряженных общих интеграла:

$$\varphi = y + i \cdot \operatorname{arctg} x = C_1; \quad \bar{\varphi} = y - i \cdot \operatorname{arctg} x = C_2.$$

- 3. Выполним замену: $\xi = \text{Re}(\varphi) = y$, $\eta = \text{Im}(\varphi) = \text{arctg } x$.
- 4. Вычислим значения частных производных от функций ξ и η :

$$\xi_x = 0, \ \xi_y = 1, \ \eta_x = \frac{1}{1+x^2}, \ \eta_y = 0, \ \xi_{xx} = 0, \ \xi_{yy} = 0,$$

 $\xi_{xy} = 0, \ \eta_{xx} = -\frac{2x}{(1+x^2)^2}, \ \eta_{yy} = 0, \ \eta_{xy} = 0.$

5. Построим выражения для производных функции u:

6. Подставив найденные выражения в заданное уравнение, приведем его к каноническому виду

$$v_{\mathcal{E}\mathcal{E}} + v_{nn} = 0. \triangleleft$$

Пример 3. Привести к каноническому виду уравнение:

$$y^2 u_{xx} + 2xy u_{xy} + x^2 u_{yy} = 0.$$

Решение. Будем рассматривать уравнение на всей плоскости, за исключением точек координатных осей, полагая $x \neq 0$ и $y \neq 0$. Так как в противном случае уравнение уже имеет канонический вид.

1. Дискриминант квадратичной формы равен: $(xy)^2 - x^2 \cdot y^2 = 0$. Следовательно, тип уравнения параболический.

- 2. Уравнение характеристик $y^2(dy)^2 2xy\,dy\,dx + x^2(dx)^2 = 0$ равносильно одному уравнению: ydy xdx = 0, общий интеграл которого имеет вид: $y^2 x^2 = C$.
- 3. Выполняем замену: $\xi = y^2 x^2$, $\eta = x$. Легко установить невырожденность преобразования для рассматриваемой области, вычислив его якобиан.
- 4. Находим коэффициенты канонического уравнения и получаем его в виде: $y^2u_{\eta\eta}+2(x^2-y^2)u_\xi=0$. Осталось выразить старые переменные x и y через новые ξ и η , используя введенную замену.

Ответ: $u_{\eta\eta} - \frac{2\xi}{\xi + \eta^2} u_{\xi} = 0$. \triangleleft

Пример 4. Найти области сохранения типа уравнения:

$$(y+2)u_{xx} + 2x \cdot u_{xy} - (y-2) \cdot u_{yy} + xu_x + 2 = 0.$$

Решение. Дискриминант уравнения равен: $d = x^2 + (y-2)(y+2) = x^2 + y^2 - 4$. Область параболичности G_1 уравнения определяет условие d = 0. Имеем $G_1 = \{(x,y) : x^2 + y^2 = 4\}$ – окружность с центром в начале координат радиусом 2.

Область гиперболичности G_2 определяет условие d>0. Имеем $G_2=\{(x,y): x^2+y^2>4\}$ — внешность круга с центром в начале координат и радиусом 2.

Область эллиптичности G_3 определяет условие d<0. Имеем $G_3=\{(x,y): x^2+y^2<4\}$ - часть плоскости, ограниченная кругом с центром в начале координат и радиусом 2. \triangleleft

Пример 5. Упростить уравнение, исключив первые производные функции u:

$$u_{xx} - u_{yy} + 3u_x + u_y = 0.$$

Решение. Введем новую функцию v(x, y) по правилу:

$$u(x,y) = e^{\lambda x + \mu y} \cdot v(x,y).$$

Так как

$$\begin{split} u_x &= e^{\lambda x + \mu y} (\lambda v + v_x), \\ u_y &= e^{\lambda x + \mu y} (\mu v + v_y), \\ u_{xx} &= e^{\lambda x + \mu y} (\lambda^2 v + 2\lambda v_x + v_{xx}), \\ u_{yy} &= e^{\lambda x + \mu y} (\mu^2 v + 2\mu v_y + v_{yy}), \end{split}$$

то, подставляя выражения для производных функции v в заданное уравнение, после приведения подобных слагаемых и деления на неот-

рицательный множитель $e^{\lambda x + \mu y}$ получим уравнение:

$$v_{xx} - v_{yy} + v_x(2\lambda + 3) + v_y(-2\mu + 1) + v(\lambda^2 - \mu^2 + 3\lambda + \mu) = 0.$$

Приравнивая коэффициенты при первых производных к нулю, получим систему двух уравнений с двумя неизвестными:

$$\begin{cases} 2\lambda + 3 = 0 \\ 1 - 2\mu = 0, \end{cases}$$

решая которую находим λ и μ : $\lambda=-\frac{3}{2}$ $\mu=\frac{1}{2}$. Тогда коэффициент при функции v будет равен: $\lambda^2-\mu^2+3\lambda+\mu=-2$.

Ответ: Уравнение приводится к виду $v_{xx}-v_{yy}-2v=0$ с помощью замены $u=e^{-\frac{3}{2}x+\frac{1}{2}y}v$. \lhd

Пример 6. Привести уравнение к каноническому виду и выполнить дальнейшие упрощения:

$$u_{xx} - 6u_{xy} + 9u_{yy} - u_x + 2u_y = 0.$$

Решение. > 1. Дискриминант квадратичной формы равен нулю. Следовательно, это уравнение параболического типа.

- 2. Заменой $\xi = y + 3x, \, \eta = x$ уравнение приводится к каноническому виду: $u_{\eta\eta} u_{\xi} u_{\eta} = 0.$
- 3. Выполняем замену $u(\xi,\eta)=e^{\lambda\xi+\mu\eta}\cdot w(\xi,\eta)$. Находим выражения для производных функции u, подставляем их в каноническое уравнение и получаем уравнение вида: $w_{\eta\eta}-w_\xi+(2\mu-1)w_\eta+(\mu^2-\lambda-\mu)w=0$
- 4. Приравниваем коэффициенты при первой производной w_η и при функции w к нулю и, решая систему уравнений: $2\mu-1=0, \, \mu^2-\lambda-\mu=0,$ находим λ и μ : $\lambda=-\frac{1}{4}$ $\mu=\frac{1}{2}.$

Ответ: Уравнение приводится к виду $w_{\eta\eta} - w_{\xi} = 0$ заменой $u = e^{-\frac{1}{4}\xi + \frac{1}{2}\eta}w$, где $\xi = y + 3x$, $\eta = x$. \triangleleft

Упражнения

- **33.** Привести уравнение для u = u(x,y) к каноническому виду и проделать дальнейшие упрощения:
 - 1) $2u_{xy} 4u_{yy} + u_x 2u_y + u + x = 0;$
 - 2) $u_{xx} 2u_{xy} + u_{yy} + 9u_x + 9u_y 9u = 0;$
 - 3) $u_{xx} + 4u_{xy} + 13u_{yy} + 3u_x + 24u_y 9u + 9(x+y) = 0.$

- **34.** Привести уравнение для u = u(x, y) к каноническому виду:
 - 1) $u_{xx} 2\sin x \cdot u_{xy} + (2 \cos^2 x) \cdot u_{yy} = 0;$
 - 2) $u_{xx} (1+y^2)^2 \cdot u_{yy} 2y(1+y^2)u_y = 0.$
- **35.** На плоскости (x,y) укажите области гиперболичности, параболичности и эллиптичности уравнений:
 - 1) $(1-x^2)u_{xx} 2xyu_{xy} (1+y^2)u_{yy} 2xu_x 2yu_y = 0;$
 - 2) $\cos x \cdot u_{xx} \sin^2 y \cdot u_{yy} + x \sin(xy) \cdot u_x = 0;$
 - 3) $\sin(x^2 + y^2) \cdot u_{xx} 2u_{xy} + u_{yy} + \sin x \cdot u_x + \cos y \cdot u_y u = 0;$
 - 4) $\sqrt{2} \cdot \cos(x^2 + y) \cdot u_{xx} 2u_{xy} + u_{yy} + u = 0.$
- **36.** Приведите уравнения к каноническому виду в каждой из областей, где сохраняется тип рассматриваемого уравнения:
 - 1) $xu_{xx} + 2xu_{xy} + (x-1)u_{yy} = 0;$
 - 2) $yu_{xx} + u_{yy} = 0$;
 - 3) $xu_{xx} + yu_{yy} + 2u_x + 2u_y = 0;$
 - 4) $u_{xx} + 2\sin x u_{xy} (\cos^2 x \sin^2 x)u_{yy} + \cos x u_y = 0;$
 - $5) \quad u_{xx} + xyu_{yy} = 0.$
 - §6. Приведение к каноническому виду линейных уравнений с частными производными второго порядка с n(n>2) независимыми переменными

Для функции $u=u(x_1,x_2,\ldots,x_n)$ рассмотрим линейное уравнение вида

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} u + c u + f(x) = 0, \quad x = (x_{1}, \dots, x_{n}), \quad (6.1)$$

где коэффициенты a_{ij}, b_i, c являются постоянными.

Уравнению (6.1) поставим в соответствие квадратичную форму

$$Q(\lambda_1, \dots, \lambda_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \lambda_i \cdot \lambda_j.$$
 (6.2)

Введем следующие обозначения для векторов-столбцов:

$$\lambda = (\lambda_1, \dots, \lambda_n)', \quad \mu = (\mu_1, \dots, \mu_n)',$$
$$X = (x_1, \dots, x_n)', \quad \xi = (\xi_1, \dots, \xi_n)'.$$

Пусть $\lambda = B \cdot \mu$ – линейное невырожденное преобразование ($|B| \neq 0$), с помощью которого квадратичная форма (6.2) приводится к каноническому виду:

$$\bar{Q}(\mu_1, \dots, \mu_n) = \sum_{i=1}^n \gamma_i \cdot \mu_i^2, \quad \gamma_i \in \{-1; 0; 1\}, i = \overline{1, n}, \quad \sum_{i=1}^n \gamma_i^2 \neq 0. \quad (6.3)$$

Тогда с помощью линейного преобразования

$$\xi = B' \cdot X,$$

где B' – транспонированная к B матрица, уравнение (6.1) приводится к каноническому виду:

$$\sum_{i=1}^{n} \gamma_i \cdot v_{\xi_i \xi_i} + F(\xi, v, \operatorname{grad} v) = 0,$$

где $v(\xi) = v(B'X) = u(x)$.

Уравнение с постоянными коэффициентами в случае нескольких независимых переменных (6.1) при помощи линейного преобразования переменных приводится к каноническому виду одновременно для всех точек области его определения. Возможны дальнейшие упрощения уравнения, введя новую функцию $w(\xi)$:

$$v(\xi) = w(\xi) \cdot e^{\alpha_1 \xi_1 + \dots + \alpha_n \xi_n}, \tag{*}$$

за счет выбора значений параметров α_i преобразования (*).

Пример 1. Привести уравнение для u = u(x, y, z) к каноническому виду:

$$u_{xx} + 2u_{xy} + 2u_{yy} + 4u_{yz} + 5u_{zz} - u_x + 2u_y + u = 0.$$

Решение. > Заданному уравнению соответствует характеристическая квадратичная форма:

$$Q(\lambda_1, \lambda_2, \lambda_3) = \lambda_1^2 + 2\lambda_1\lambda_2 + 2\lambda_2^2 + 4\lambda_2\lambda_3 + 5\lambda_3^2, \tag{A1}$$

которую с помощью метода Лагранжа можно привести к виду:

$$Q(\lambda_1, \lambda_2, \lambda_3) = (\lambda_1 + \lambda_2)^2 + (\lambda_2 + 2\lambda_3)^2 + \lambda_3^2.$$

Обозначая

$$\mu_1 = \lambda_1 + \lambda_2, \quad \mu_2 = \lambda_2 + 2\lambda_3, \quad \mu_3 = \lambda_3,$$

получим квадратичную форму в каноническом виде:

$$\bar{Q}(\mu_1, \mu_2, \mu_3) = \mu_1^2 + \mu_2^2 + \mu_3^2. \tag{A2}$$

Таким образом, невырожденное аффинное преобразование

$$\begin{cases} \lambda_1 = \mu_1 - \mu_2 + 2\mu_3, \\ \lambda_2 = \mu_2 - 2\mu_3, \\ \lambda_3 = \mu_3 \end{cases}$$

с матрицей
$$B = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array} \right)$$
 приводит квадратичную форму Q

к каноническому виду (A2). Канонический вид квадратичной формы (A2) позволяет сделать вывод о том, что заданное уравнение имеет эллиптический тип во всем пространстве.

Введем новые переменные $\xi,\ \eta,\ \zeta$:

$$\left(\begin{array}{c} \xi \\ \eta \\ \zeta \end{array}\right) = B' \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

Установим, какой вид примет заданное уравнение, если выполнить замену переменных по правилу:

$$\xi = x$$
, $\eta = -x + y$, $\zeta = 2x - 2y + z$.

Обозначая $u(x,y,z)=v(\xi,\eta,\zeta),$ выразим все производные, входящие в уравнение, через новые переменные:

Здесь слева от вертикальной черты указаны коэффициенты, с которыми производные входят в уравнение. Подставив найденные выражения в исходное уравнение, получим его канонический вид в новых переменных:

$$v_{\xi\xi} + v_{\eta\eta} + v_{\zeta\zeta} - v_{\xi} + 3v_{\eta} - 6v_{\zeta} + v = 0.$$

Полученное уравнение можно привести к виду, не содержащему частных производных первого порядка, с помощью замены (*) (см. стр.77) при n=3. \triangleleft

Упражнения

- **37.** Привести уравнение для u = u(x, y, z) к каноническому виду:
 - 1) $u_{xx} + 2u_{xy} 2u_{xz} + 2u_{yy} + 6u_{zz} = 0;$
 - 2) $u_{xx} + 2u_{xy} 2u_{xz} + 2u_{yy} + 2u_{zz} = 0;$
 - 3) $u_{xy} 2u_{xz} + u_{yz} + u_x + \frac{1}{2}u_y = 0.$
- **38.** Привести к каноническому виду и проделать дальнейшие упрощения уравнений, u = u(x, y, z):
 - 1) $u_{xy} u_{xz} u_x + u_y + u_z + u = 0;$
 - 2) $u_{xx} 2u_{xy} 2u_{xz} + u_x + u_y + 2u_z + u = 0;$
 - 3) $u_{xx} + u_{xy} + u_{zz} + u_x + u_y + u_z + u = 0;$
 - 4) $u_{yy} 2u_{xy} + u_{zz} + u_x + u_y + u_z + u = 0;$
 - 5) $2u_{xx} + u_{yy} + u_{zz} + 2u_{xy} + 2u_x + u_y + u_z + 4u = 0;$
 - 6) $2u_{xx} + u_{yy} + u_{zz} 2u_{xy} + 2u_x u_y + u_z + u = 0;$

7)
$$u_{xx} + u_{yy} + u_{zz} - 2u_{xy} + 2u_{xz} - 2u_{yz} + 2u_x - u_z + u = 0.$$

§7. Метод характеристик

Метод приведения уравнения (5.1) к каноническому виду, описанный в $\S 5$, и решение полученного при этом уравнения носит название метода характеристик.

Пример 1. Найти общее решение уравнения:

$$x^2 u_{xx} - 2xy u_{xy} + y^2 u_{yy} + xu_x + yu_y = 0.$$

Решение. Заданное уравнение имеет параболический тип (так как дискриминант уравнения равен нулю: $b^2 - ac = (xy)^2 - x^2 \cdot y^2 = 0$) и заменой:

$$\xi = xy, \quad \eta = x, \quad u(x,y) = v(\xi,\eta)$$
 (A1)

приводится к виду:

$$\eta v_{\eta\eta} + v_{\eta} = 0. \tag{A2}$$

Для того чтобы решить это уравнение, сделаем замену $w=v_{\eta}$. В результате получим дифференциальное уравнение первого порядка с разделяющимися переменными: $\eta w_{\eta} + w = 0$, в котором переменная ξ рассматривается как параметр. Его решение имеет вид: $w=\frac{\varphi_1(\xi)}{\eta}$, где $\varphi_1(\xi)$ – произвольная функция. Выполняя обратную замену, снова получаем дифференциальное уравнение первого порядка: $v_{\eta}=\frac{\varphi_1(\xi)}{\eta}$, интегрируя которое получим решение уравнения (A2):

$$v(\xi, \eta) = \varphi_1(\xi) \ln \eta + \varphi_2(\xi), \tag{A3}$$

где $\varphi_2(\xi)$ – произвольная функция.

В равенстве (A3) вернемся к старым переменным x, y, учитывая замену (A1). В результате получим общее решение заданного уравнения:

$$u(x, y) = \varphi_1(xy) \ln x + \varphi_2(xy),$$

где $\varphi_1,\ \varphi_2$ – произвольные дважды непрерывно дифференцируемые функции.

Замечание. При решении уравнения (A2) можно было не вводить замену. Действительно, уравнение (A2) равносильно следующему:

$$\frac{\partial}{\partial \eta} \left(\eta v_{\eta} \right) = 0,$$

интегрируя которое получаем:

$$\eta v_{\eta} = \varphi(\xi), \quad v_{\eta} = \frac{1}{n} \varphi(\xi), \quad v(\xi, \eta) = \varphi(\xi) \cdot \ln \eta + \psi(\xi). \triangleleft$$

Пример 2. Найти решение уравнения:

$$u_{xx} + 2\cos x \cdot u_{xy} - \sin^2 x \cdot u_{yy} - \sin x \cdot u_y = 0,$$

удовлетворяющее условиям: $u(x, \sin x) = 3x^2$, $u_y(x, \sin x) = x$.

Решение.⊳ Заданное уравнение имеет гиперболический тип (дискриминант больше нуля) и с помощью замены

$$\xi = y - x - \sin x, \quad \eta = y + x - \sin x, \quad u(x, y) = v(\xi, \eta) \tag{B1}$$

приводится к виду: $v_{\xi\eta} = 0$.

Общее решение этого уравнения имеет вид: $v(\xi, \eta) = \varphi_1(\xi) + \varphi_2(\eta)$.

Подставляя выражения (B1) для ξ и η , получим общее решение заданного уравнения:

$$u(x,y) = \varphi_1(y - x - \sin x) + \varphi_2(y + x - \sin x). \tag{B2}$$

Найдем вид функций φ_1 и φ_2 . Подчиняя полученное выражение для функции u(x,y) заданным условиям, будем иметь:

$$\begin{cases} \varphi_1(-x) + \varphi_2(x) = 3x^2, \\ \varphi'_1(-x) + \varphi'_2(x) = x. \end{cases}$$
 (B3)

Продифференцировав первое уравнение системы по x и складывая его затем со вторым уравнением, получим выражение, которое содержит только неизвестную функцию φ_2 :

$$\varphi_2'(x) = \frac{7}{2}x.$$

Интегрируя последнее уравнение, найдем выражение для функции φ_2 :

$$\varphi_2(x) = \frac{7}{4}x^2 + C.$$

Затем из первого уравнения системы (В3) найдем выражение для функции φ_1 :

$$\varphi_1(-x) = 3x^2 - \varphi_2(x) = \frac{5}{4}x^2 - C,$$

$$\varphi_1(x) = \frac{5}{4}(-x)^2 - C = \frac{5}{4}x^2 - C.$$

Заменив в (B2) функции φ_1, φ_2 их явными выражениями, получим решение задачи.

Ответ: $u(x,y) = 3\sin^2 x - (x+6y)\sin x + 3x^2 + 3y^2 + xy$.

Проверка: Для найденной функции имеем:

$$u_x = 6\sin x \cdot \cos x - \sin x - (x+6y)\cdot \cos x + 6x + y;$$

$$u_{xx} = 6(\cos^2 x - \sin^2 x) - \cos x - \cos x + (x + 6y) \cdot \sin x + 6;$$

$$u_y = -6\sin x + 6y + x;$$
 $u_{xy} = -6\cos x + 1;$ $u_{yy} = 6.$

Подставляя эти выражения в исходное уравнение:

$$6\cos^2 x - 6\sin^2 x - \cos x - \cos x + x \cdot \sin x + 6y \cdot \sin x + 6 + \\ +2\cos x \cdot (-6\cos x + 1) - 6\sin^2 x - \sin x \cdot (-6\sin x + 6y + x) = 0,$$

получаем тождество: $0 \equiv 0$.

Проверим выполнение условий:

$$u(x, \sin x) = 3\sin^2 x - (x + 6\sin x) \cdot \sin x + 3x^2 + 3\sin^2 x + x\sin x = 3x^2,$$

$$u_y(x, \sin x) = -6\sin x + 6\sin x + x = x.$$

Таким образом, полученное решение удовлетворяет уравнению и заданным условиям. ⊲

Пример 3. Найти решение уравнения в первой четверти координатной плоскости (x,y) :

$$u_{xx} + 2u_{xy} + u_{yy} = f(x, y), \quad 0 < x < +\infty, \ 0 < y < +\infty,$$
 (C1)

удовлетворяющее краевым условиям:

$$u(0,y) = \psi_0(y), \quad u_x(0,y) = \psi_1(y), \quad 0 \le y < +\infty,$$
 (C2)

$$u(x,0) = \varphi_0(x), \quad u_y(x,0) = \varphi_1(x), \quad 0 \le x < +\infty,$$
 (C3)
$$\varphi_0(0) = \psi_0(0).$$

Решение. Так как заданное уравнение имеет параболический тип в любой точке плоскости, то соответствующее уравнение характеристик

$$(dy)^2 - 2dy \cdot dx + (dx)^2 = 0 \iff (dx - dy)^2 = 0$$

позволяет определить одно семейство характеристик: $x-y=c{=}{\rm const.}$ Вводя новые независимые переменные

$$\xi = x - y \quad \text{if} \quad \eta = x, \tag{C4}$$

получим для новой функции $v(\xi,\eta)$:

$$v(\xi, \eta) = v(x - y, x) = u(x, y)$$

уравнение в канонической форме:

$$v_{\eta\eta} = f(\eta, \eta - \xi),$$

интегрируя которое по переменной η дважды, получим его общее решение в виде:

$$v(\xi, \eta) = \int_0^{\eta} \int_0^t f(\gamma, \gamma - \xi) \, d\gamma \, dt + \eta \cdot A(\xi) + B(\xi),$$

где A и B – произвольные непрерывно дифференцируемые функции. Так как подынтегральная функция не зависит от t, то изменение порядка интегрирования дает:

$$\int\limits_0^\eta \int\limits_0^t f(\gamma,\gamma-\xi)\,d\gamma\,dt = \int\limits_0^\eta \left(f(\gamma,\gamma-\xi) \int\limits_\gamma^\eta \,dt \right)\,d\gamma = \int\limits_0^\eta (\eta-\gamma) f(\gamma,\gamma-\xi)\,d\gamma.$$

Таким образом, будем иметь

$$v(\xi, \eta) = \int_0^{\eta} (\eta - \gamma) f(\gamma, \gamma - \xi) d\gamma + \eta \cdot A(\xi) + B(\xi).$$

Возвращаясь к старым переменным x и y, получим общее решение заданного уравнения (C1):

$$u(x,y) = v(x-y,x) =$$

$$= \int_0^x (x-\gamma)f(\gamma,\gamma-x+y) d\gamma + x \cdot A(x-y) + B(x-y). \tag{C5}$$

Определим вид функции A и B, подчинив выражение (C5) для функции u(x,y) заданным граничным условиям. Предварительно построим выражения для частных производных u_x и u_y , используя правило дифференцирования интеграла, зависящего от параметра:

$$u_x(x,y) = \int_0^x \{ f(\gamma, \gamma - x + y) - (x - \gamma) f_2'(\gamma, \gamma - x + y) \} d\gamma + A(x - y) + xA'(x - y) + B'(x - y),$$

$$u_y(x,y) = \int_0^x (x-\gamma)f_2'(\gamma,\gamma-x+y) \, d\gamma - xA'(x-y) - B'(x-y),$$

где f_2' – обозначение частной производной функции f по второму аргументу. При x=0 имеем систему

$$\begin{cases} u(0,y) = B(-y) = \psi_0(y), \\ u_x(0,y) = A(-y) + B'(-y) = \psi_1(y), \end{cases}$$

решая которую относительно неизвестных функций А и В, получим

$$\begin{cases}
B(-y) = \psi_0(y), \\
A(-y) = \psi'_0(y) + \psi_1(y),
\end{cases}
\Leftrightarrow
\begin{cases}
B(y) = \psi_0(-y), \\
A(y) = \psi'_0(-y) + \psi_1(-y).
\end{cases}$$
(C6)

Если учесть область задания функций ψ_0 и ψ_1 , то видим, что полученные выражения определяют функции A(y) и B(y) только при отрицательных значениях аргумента y<0. Вторая пара условий (C3) при y=0 дает:

$$\begin{cases} u(x,0) = \int_0^x (x-\gamma)f(\gamma,\gamma-x) \, d\gamma + xA(x) + B(x) = \varphi_0(x), \\ u_y(x,0) = \int_0^x (x-\gamma)f_2'(\gamma,\gamma-x) \, d\gamma - xA'(x) - B'(x) = \varphi_1(x). \end{cases}$$
(C7)

Дифференцируя первое уравнение системы по переменной x, получим уравнение

$$\int_{0}^{x} \{ f(\gamma, \gamma - x) - (x - \gamma) f_2'(\gamma, \gamma - x) \} d\gamma + A(x) + xA'(x) + B'(x) = \varphi_0'(x),$$

складывая которое со вторым уравнением системы (С7), получим

$$\int_0^x f(\gamma, \gamma - x) \, d\gamma + A(x) = \varphi_0'(x) + \varphi_1(x).$$

Отсюда устанавливаем выражение для функции A(x):

$$A(x) = \varphi_0'(x) + \varphi_1(x) - \int_0^x f(\gamma, \gamma - x) \, d\gamma. \tag{C8}$$

Подставляя найденное выражение для A(x) в первое уравнение системы (C7), найдем

$$B(x) = \varphi_0(x) - x\varphi_1(x) - x\varphi_0'(x) + \int_0^x \gamma f(\gamma, \gamma - x) \, d\gamma. \tag{C9}$$

Заметим, что выражения (С8) и (С9) определяют функции A(x) и B(x) при x>0. Таким образом, установили, что

$$A(x) = \begin{cases} \varphi_0'(x) + \varphi_1(x) - \int_0^x f(\gamma, \gamma - x) \, d\gamma, & x > 0, \\ \psi_0'(-x) + \psi_1(-x), & x < 0; \end{cases}$$

$$B(x) = \begin{cases} \varphi_0(x) - x\varphi_1(x) - x\varphi_0'(x) + \int_0^x \gamma f(\gamma, \gamma - x) \, d\gamma, & x > 0, \\ \psi_0(-x), & x < 0. \end{cases}$$

Подставим найденные выражения для функций A(x) и B(x) в (C5). При x-y>0 будем иметь:

$$u(x,y) = \int_0^x (x - \gamma) f(\gamma, \gamma - x + y) \, d\gamma + x \varphi_0'(x - y) + x \varphi_1(x - y) -$$

$$-x \int_0^{x - y} f(\gamma, \gamma - x + y) \, d\gamma + \varphi_0(x - y) - (x - y) \varphi_1(x - y) -$$

$$-(x - y) \varphi_0'(x - y) + \int_0^{x - y} \gamma f(\gamma, \gamma - x + y) \, d\gamma =$$

$$= \varphi_0(x - y) + y \varphi_0'(x - y) + y \varphi_1(x - y) +$$

$$+ \int_0^x (x - \gamma) f(\gamma, \gamma - x + y) \, d\gamma - \int_0^{x - y} (x - \gamma) f(\gamma, \gamma - x + y) \, d\gamma =$$

$$= \varphi_0(x - y) + y \varphi_0'(x - y) + y \varphi_1(x - y) + \int_{x - y}^x (x - \gamma) f(\gamma, \gamma - x + y) \, d\gamma.$$

При x - y < 0:

$$u(x,y) = x\psi_1(y-x) + x\psi'_0(y-x) + \psi_0(y-x) + \int_0^x (x-\gamma)f(\gamma, \gamma - x + y) \, d\gamma.$$

Выполнив замену для переменной интегрирования $\gamma = \mu + x - y$, получим

$$u(x,y) = x\psi_1(y-x) + x\psi_0'(y-x) + \psi_0(y-x) + \int_{y-x}^{y} (y-\mu)f(x-y+\mu,\mu) d\mu.$$

Таким образом, решением краевой задачи будет функция:

$$u(x,t) = \begin{cases} \varphi_0(x-y) + y\varphi_0'(x-y) + y\varphi_1(x-y) + \\ + \int_{x-y}^x f(\xi, y-x+\gamma)(x-\gamma) \, d\gamma, & x > y; \\ \psi_0(y-x) + x\psi_0'(y-x) + x\psi_1(y-x) + \\ + \int_{y-x}^y f(x-y+\gamma,\gamma)(y-\gamma) \, d\xi, & x < y. \quad \triangleleft \end{cases}$$

Упражнения

39. Найти общее решение уравнений для u = u(x, y):

1)
$$x \cdot u_{xx} - 4x^2 \cdot u_{xy} + 4x^3 \cdot u_{yy} + u_x - 4x \cdot u_y - x(y+x^2) = 0;$$

- 2) $\mathbf{x} \cdot u_{xx} y \cdot u_{yy} + \frac{1}{2} \cdot (u_x u_y) = 0, \quad x > 0, \ y > 0;$
- 3) $(1-x^2)u_{xx} 2xyu_{xy} (1+y^2)u_{yy} 2xu_x 2yu_y = 0;$
- 4) $(x^2 1)u_{xx} + 2xyu_{xy} + (y^2 1)u_{yy} + 2xu_x + 2yu_y = 0.$
- **40.** Найти решения уравнений для u = u(x, y), удовлетворяющие заданным начальным условиям:
 - 1) $u_{xx} + 2u_{xy} 3u_{yy} = 0$, $u(x,0) = 3x^2$, $u_y(x,0) = 0$;
 - 2) $u_{xx} + 4u_{xy} 5u_{yy} + u_x u_y = 0$, u(x,0) = 2x, $u_y(x,0) = 1$;
 - 3) $(\sin^2 y 4)u_{xx} 2\sin y \cdot u_{xy} + u_{yy} \cos y \cdot u_x = 0,$ $u(\cos y, y) = \cos y, \quad u_x(\cos y, y) = \sin y;$
 - 4) $u_{xx} 2\sin x \cdot u_{xy} \cos^2 x \cdot u_{yy} \cos x \cdot u_y = 0,$ $u(x,\cos x) = u_o(x), \quad u_v(x,\cos x) = u_1(x);$
 - 5) $4y^2 \cdot u_{xx} + 2(1-y^2) \cdot u_{xy} u_{yy} \frac{2y}{(1+y^2)} \cdot (2u_x u_y) = 0,$
 - a) $u(x,0) = x^2$, $u_u(x,0) = x$,
 - 6) $u(x,0) = F(x), \quad u_u(x,0) = G(x);$
 - 6) $x^2 \cdot u_{xx} 2xy \cdot u_{xy} 3y^2 \cdot u_{yy} = 0, \quad x \neq 0, y \neq 0,$ $u(x, 1) = F(x), \quad u_y(x, 1) = G(x).$

41. Покажите, что общее решение уравнения

$$\frac{2x}{2n+1}\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} = 0$$

имеет вид

$$u(x,y) = \frac{\partial^{n-1}}{\partial x^{n-1}} \left[\frac{F_1(\sqrt{2(2n+1)x} + y) + F_2(\sqrt{2(2n+1)x} - y)}{\sqrt{x}} \right],$$

где F_1 и F_2 – произвольные функции.

42. Покажите, что общее решение уравнения

$$\frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{2}{x} \frac{\partial u}{\partial x} - \frac{n(n+1)}{x^2} u$$

имеет вид

$$u(x,t) = x^n \left(\frac{1}{x}\frac{\partial}{\partial x}\right)^n \left[\frac{\Phi(x-at) + \Psi(x+at)}{x}\right],$$

где Ф и Ψ – произвольные функции.

43. Найдите общее решение уравнения

$$u_{xy} - \frac{2}{x - y}u_x + \frac{3}{x - y}u_y - \frac{3}{(x - y)^2}u = 0.$$

Указание. Введите новую функцию v, положив $u = (x - y)^{-1}v$.

44. Найдите решение уравнения

$$u_{xx} + yu_{yy} + \frac{1}{2}u_y = 0, \quad (y < 0),$$

удовлетворяющее условиям

$$u(x,0) = \tau(x), \quad u_y(x,0)$$
 — конечная величина.

Глава III.

Математическое описание процессов, изучаемых методами математической физики. Вывод уравнений и постановка краевых задач

Исследование различных явлений природы во многих случаях сводится к решению дифференциальных уравнений в частных производных, составляющих один из классов так называемых уравнений математической физики. Построение математической модели процесса начинается с установления величин, которые являются определяющими для изучаемого процесса. Затем, используя физические законы (принципы), выражающие связь между этими величинами, строится уравнение (система уравнений) с частными производными и составляются дополнительные условия (начальные и граничные) к уравнению (системе).

Одна и та же задача математической физики может служить моделью различных физических, биологических, химических и других процессов.

§1. Вывод уравнений

Предлагается при выводе уравнений использовать следующие общие обозначения в зависимости от рассматриваемого процесса:

- 1) колебание линейных тел (струна, стержень, нить и пр.)
 - u(x,t) отклонение точки x от положения равновесия в момент времени t,
 - l длина тела,
 - $\rho(x)$ линейная плотность тела в точке x,
 - k(x) коэффициент упругости,
 - T(x,t) абсолютная величина силы натяжения, приложенной в точке x в момент времени t,
 - f(x,t) плотность внешних сил,
 - $\beta(x)$ коэффициент сопротивления внешней среды (например, коэффициент сопротивления воздуха),
 - g ускорение силы тяжести.
- 2) Распространение тепла в теле

u(M,t) — температура тела в точке M в момент времени t,

V – объем тела,

 $\rho(M)$ – плотность тела в точке M,

c(M) – коэффициент теплоемкости в точке M,

k(M) – коэффициент теплопроводности в точке M,

 $k_1(P)$ – коэффициент теплообмена в точке P поверхности тела,

f(M,t) — мощность внутренних источников тепла.

3) Диффузия вещества в подвижной или неподвижной среде

u(M,t) — концентрация вещества в точке M в момент времени t,

c(M) – коэффициент пористости среды,

D(M) — коэффициент диффузии в точке M,

 $\vec{v}(M)$ — вектор скорости движения среды в точке M,

 σ — коэффициент распада вещества,

 $k_1(P)$ – коэффициент проницаемости в точке P границы среды,

f(M,t) — мощность внутренних источников выделения/поглощения вещества.

В задачах о колебаниях струн, стержней, газа рассматриваются малые колебания. Малыми колебаниями называются такие колебания, при которых можно пренебрегать квадратами, произведениями и высшими степенями функций, характеризующих процесс колебаний, и их производных.

Уравнение колебания стержня может быть получено предельным переходом при $\Delta x \to 0$ из уравнения движения, выражающего второй закон Ньютона для элемента $(x; x + \Delta x)$ стержня, т.е. для элемента стержня, торцы которого в состоянии равновесия имеют абсциссы x и $x + \Delta x$.

Уравнения и граничные условия *краевых задач теории теплопроводности* являются следствием:

- 1. закона сохранения энергии;
- 2. закона внутренней теплопроводности в твердых телах (закон **Фу- рье**), который выражается формулой:

$$q = -kS\frac{\partial u}{\partial n},$$

где q – количество тепла, протекающее в единицу времени в направлении n, перпендикулярном площадке S;

3. закона конвективного теплообмена между поверхностью твердого тела и окружающей средой (закон **Ньютона**):

$$q = k_1 S(u - u_0),$$

где q — количество тепла, протекающее в единицу времени через площадку S поверхности тела в окружающую среду с температурой u_0 ;

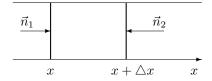
4. закона о количестве тепла, которое необходимо сообщить однородному телу, чтобы повысить его температуру на Δu :

$$Q=c\rho V\Delta u.$$

Пример 1. Вывести уравнение для температуры однородного изотропного стержня длины l с постоянным поперечным сечением, когда на боковой поверхности стержня происходит конвективный теплообмен по закону Ньютона со средой, температура которой поддерживается постоянной и равной u_0 . Предполагается, что поперечные сечения стержня являются изотермическими поверхностями, т.е. температура любых точек сечения одинакова.

Решение. Направим координатную ось x вдоль оси стержня, совмещая один из его концов с началом координат. Так как поперечные сечения стержня являются изотермическими поверхностями, то достаточно выбрать одну пространственную координату, обозначив через u(x,t) — температуру в точках поперечного сечения x в момент времени t. Обозначим через S и p — площадь поперечного сечения и его периметр соответственно. Пояснения к остальным используемым далее обозначениям c, ρ , k, k_1 были даны в начале параграфа. Укажем только, что так как стержень является однородным и изотропным, то все они являются постоянными величинами.

Выделим произвольный элемент стержня малой длины $\triangle x$ и составим для него уравнение баланса тепла на промежутке времени $[t;t+\triangle t].$



Puc.~1. Нормали \vec{n}_1 и \vec{n}_2 к поперечным сечениям x и $x+\Delta x$ произвольного элемента стержня указывают направление потока тепла.

За указанный промежуток времени изменение количества тепла $\triangle Q$ элемента стержня $[x;x+\triangle x]$ происходит за счет поступления тепла через сечения x и $x+\triangle x$ в количестве Q_1 и Q_2 соответсвенно и через боковую поверхность в количестве Q_3 . Поэтому имеем

$$\Delta Q = Q_1 + Q_2 + Q_3. \tag{A1}$$

Приращение количества тепла в элементе численно определяется количеством тепла, которое необходимо сообщить участку стержня для изменения температуры точек его перпендикулярных сечений на величину $u(x,t+\Delta t)-u(x,t)$, и равно:

$$\triangle Q = \int_{x}^{x+\triangle x} c\rho S[u(\xi, t+\triangle t) - u(\xi, t)] d\xi = c\rho S \int_{x}^{x+\triangle x} [u(\xi, t+\triangle t) - u(\xi, t)] d\xi.$$
(A2)

Приток тепла через сечения x и $x+\triangle x$ за промежуток времени $[t;t+\triangle t]$, согласно закону Фурье, равен:

$$Q_1 + Q_2 = -\int_{t}^{t+\Delta t} kS \frac{\partial u(x,\tau)}{\partial n_1} d\tau - \int_{t}^{t+\Delta t} kS \frac{\partial u(x+\Delta x,\tau)}{\partial n_2} d\tau =$$

$$= -kS \int_{t}^{t+\Delta t} \frac{\partial u(x,\tau)}{\partial x} d\tau + kS \int_{t}^{t+\Delta t} \frac{\partial u(x+\Delta x,\tau)}{\partial x} d\tau.$$

Таким образом, для притока тепла через сечения имеем

$$Q_1 + Q_2 = kS \int_{t}^{t+\Delta t} \left(\frac{\partial u(x + \Delta x, \tau)}{\partial x} - \frac{\partial u(x, \tau)}{\partial x} \right) d\tau.$$
 (A3)

Приток тепла через боковую поверхность за тот же промежуток времени определим в соответствии с законом Ньютона:

$$Q_{3} = \int_{t}^{t+\triangle t} \int_{x}^{x+\triangle x} k_{1} p(u_{0} - u(\xi, \tau)) d\xi d\tau = k_{1} p \int_{t}^{t+\triangle t} \int_{x}^{x+\triangle x} (u_{0} - u(\xi, \tau)) d\xi d\tau.$$
(A4)

Предполагая, что функция u(x,t) удовлетворяет условиям гладкости, применим к интегралам, входящим в выражения (A2), (A3) и (A4) теорему о среднем и подставим полученные выражения в уравнение (A1). Будем иметь

$$c\rho S[u(x_1, t + \triangle t) - u(x_2, t)] \triangle x =$$

$$= kS \left\{ \frac{\partial u(x + \triangle x, t_1)}{\partial x} - \frac{\partial u(x, t_2)}{\partial x} \right\} \triangle t + k_1 p(u_0 - u(x_3, t_3)) \triangle x \triangle t,$$

где $x_1, x_2, x_3 \in (x; x + \triangle x), \quad t_1, t_2, t_3 \in (t; t + \triangle t)$. Разделив полученное равенство на $\triangle x \cdot \triangle t$ и переходя к пределу при $\triangle x \to 0$ и $\triangle t \to 0$, получим уравнение

$$c\rho S \frac{\partial u}{\partial t} = kS \frac{\partial^2 u}{\partial x^2} + k_1 p(u_0 - u(x, t)),$$

которое можно привести к виду

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} - \beta (u - u_0), \tag{A5}$$

где

$$a^2 = \frac{k}{c\rho}, \quad \beta = \frac{k_1 p}{c\rho S}.$$

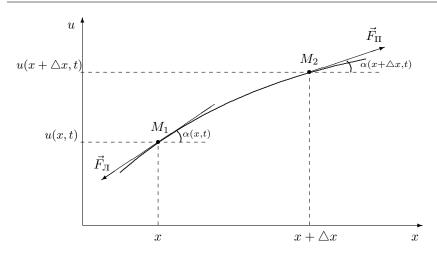
Таким образом, построили уравнение (A5), которое описывает изменение температуры стержня за счет процессов внутреннего теплообмена и внешнего теплообмена со средой с заданной температурой u_0 . \triangleleft

Пример 2. Вывести уравнение малых поперечных колебаний закрепленной на концах натянутой однородной струны, предполагая, что действующая на струну сила натяжения значительно больше силы тяжести, т.е. действием силы тяжести можно пренебречь.

Решение. Будем считать, что в положении равновесия ось струны и координатная ось x совпадают. Пусть функция u=u(x,t) характеризует отклонение точки струны M с абсциссой x от положения равновесия в момент времени t (рис. 2). Обозначим через $\alpha=\alpha(x,t)$ – острый угол, образуемый осью абсцисс и касательной к струне в точке M с абсциссой x в момент времени t.

Условие малости колебаний означает, что величиной $\alpha^2(x,t)$ можно пренебречь, а поэтому имеем

$$\sin \alpha \approx \alpha$$
, $\cos \alpha \approx 1$, $\frac{\partial u}{\partial x} = \operatorname{tg} \alpha \approx \alpha$. (B1)



 $Puc.\ 2.$ М
гновенный профиль участка струны $(x; x + \triangle x)$ в момент времени t.

Длина произвольного участка M_1M_2 струны в любой момент времени выражается формулой:

$$l_{M_1 M_2} = \int_x^{x + \triangle x} \sqrt{1 + u_x^2} \, dx,$$

и так как $u_x^2 \approx \alpha^2 \approx 0$, то имеем

$$l_{M_1M_2} \approx (x + \triangle x) - x = \triangle x.$$

Таким образом, получаем, что при условии малых отклонений длина произвольного участка струны сохраняется. А значит, можно считать, что величина сил натяжения точек струны не изменяется с течением времени, т.е. имеем T(x,t)=T(x).

Согласно второму закону Ньютона сумма всех сил, действующих на участок струны M_1M_2 , равна по величине и по направлению вектору ускорения этого участка, умноженному на его массу. Определим величины всех сил, действующих на этот участок. Обозначим через F(x,t) плотность распределения внешних сил, вызывающих отклонение точек струны только в вертикальном направлении. Тогда величина внешних сил, действующих на участок M_1M_2 , при условии непрерывности функ-

ции F(x,t) по переменной x равна:

$$\int_{x}^{x+\triangle x} F(\xi,t) d\xi = F(x_1,t)\triangle x, \quad x_1 \in (x;x+\triangle x).$$

Далее, силы натяжения $F_{\Pi}=T(x)$ и $F_{\Pi}=T(x+\Delta x)$, действующие со стороны левого (в точке M_1) и правого (в точке M_2) концов струны, направлены по касательным к мгновенному профилю струны в соответствующих точках. Из малости колебаний и из того, что равнодействующая всех сил вызывает только вертикальные перемещения, заключаем, что горизонтальная составляющая равнодействующей равна нулю, т.е. имеем

$$-T(x)\cos\alpha(x,t) + T(x+\Delta x)\cos\alpha(x+\Delta x,t) = 0.$$

И так как в силу условий (B1) $\cos\alpha(x,t)\approx\cos\alpha(x+\triangle x,t)\approx 1$, то получаем равенство

$$T(x) = T(x + \triangle x) = T_0 = const.$$

С учетом этого для вертикальной составляющей сил натяжения имеем выражение

$$T_0 \sin \alpha(x + \Delta x, t) - T_0 \sin \alpha(x, t)$$
.

Условия (В1) позволяют выполнить следующие преобразования:

$$\sin \alpha(x + \Delta x, t) - \sin \alpha(x, t) \approx \operatorname{tg} \alpha(x + \Delta x, t) - \operatorname{tg} \alpha(x, t) =$$

$$= u_x(x + \Delta x, t) - u_x(x, t) \approx u_{xx}(x_2, t) \Delta x, \quad x_2 \in (x; x + \Delta x).$$

Таким образом, сумма всех сил, действующих на участок M_1M_2 , равна:

$$F_{M_1 M_2} = T_0 u_{xx}(x_2, t) \triangle x + F(x_1, t) \triangle x.$$
 (B2)

С другой стороны, по второму закону Ньютона, рассматривая участок струны как совокупность материальных точек, имеем

$$F_{M_1M_2} = \int_x^{x+\triangle x} \rho u_{tt}(\xi, t) d\xi \approx \rho u_{tt}(x_3, t) \triangle x, \quad x_3 \in (x; x + \triangle x), \quad (B3)$$

где ρ — линейная плотность струны. Приравнивая выражения (B2) и (B3) и переходя к пределу при $\triangle x \to 0$, для искомой функции получим уравнение

$$u_{tt} = \frac{T_0}{\rho} u_{xx} + \frac{1}{\rho} F(x, t). \quad \triangleleft$$

Упражнения

- 1. Абсолютно гибкая однородная нить закреплена на одном из концов и под действием своего веса находится в вертикальном положении равновесия. Вывести уравнения малых колебаний нити.
- **2.** Тяжелая однородная нить длиной l, прикрепленная верхним концом (x=0) к вертикальной оси, вращается вокруг этой оси с постоянной угловой скоростью ω . Вывести уравнение малых колебаний нити около своего вертикального положения равновесия.
- **3.** Вывести уравнение поперечных колебаний струны в среде, сопротивление которой пропорционально первой степени скорости.
- 4. По трубе (x>0) пропускается со скоростью ν горячая вода. Пусть u температура воды в трубе, v температура стенок трубы, u_0 температура окружающей среды. Вывести уравнения для функций u и v, пренебрегая распределением температуры по сечению трубы и стенок и считая, что на границах вода-стенка и стенка-среда существует перепад температур и теплообмен происходит по закону Ньютона.
- **5.** Вывести уравнение для концентрации вещества, диффундирующего в неподвижной среде с коэффициентом диффузии D(x,y,z,t) и плотностью F(x,y,z,t) источников диффундирующего вещества.

Указание. Воспользуйтесь основным законом диффузии в неподвижной среде, согласно которому

$$q = -D\frac{\partial C}{\partial n},$$

где q — диффузионный поток, т.е. количество вещества, переносимое через единицу площади поверхности за единицу времени, а n — нормаль к поверхности в направлении уменьшения концентрации.

6. Вывести уравнение диффузии в среде, равномерно движущейся в направлении оси x со скоростью w. Рассмотреть случай одной независимой переменной.

§2. Постановка краевых задач

Пусть $G\subset R^n$ — область пространства, в которой изучается физический процесс, а S — граница области G. Функция u(M,t) (или u(M)) количественно характеризует процесс в точке $M\in G$ в момент времени $t\geq 0$.

Классификация основных уравнений математической физики

1. Волновое уравнение (гиперболический тип):

$$u_{tt} = a^2 \Delta u + f(M, t).$$

2. Уравнение теплопроводности или диффузии (параболический тип):

$$u_t = a^2 \Delta u + f(M, t).$$

3. Уравнения Лапласа и Пуассона (эллиптический тип):

$$\Delta u = 0$$
 и $\Delta u = -f(M)$,

описывают стационарные физические процессы.

Здесь Δ – оператор Лапласа.

Классификация краевых задач

- 1. $3adaчa\ Komu$ для уравнений гиперболического и параболического типов: задаются начальные условия, область $G=R^n$.
- 2. Краевая задача для уравнения эллиптического типа: задается граничное условие на границе S.
- 3. Смешанная задача для уравнений гиперболического и параболического типов: задаются начальные и граничные условия, $G \neq R^n$.

Пример 1. Дать постановку краевой задачи для уравнения, полученного в примере $1\ \S 1$, при следующих условиях: известна начальная температура поперечных сечений стержня, один из концов стержня поддерживается при нулевой температуре, а на другом происходит конвективный теплообмен по закону Ньютона со средой с заданной температурой $u_0=$ const.

Решение. При решении задачи об определении температуры u(x,t) в момент времени t>0, наряду с уравнением, следует знать начальную температуру стержня (при t=0), а также граничные условия, определяющие тепловой режим на концах стержня.

Формализация условия об известном температурном распределении вдоль стержня в момент времени t=0, описываемом функцией $\varphi(x)$, дает начальное условие краевой задачи:

$$u(x,0) = \varphi(x), \quad 0 \le x \le l.$$

Одно из граничных условий (при x = 0), очевидно, запишется в виде

$$u(0,t) = 0.$$

Второе граничное условие (при x=l) получим на основе уравнения баланса тепла для малого участка стержня, примыкающего к концу

x=l. За малый промежуток времени $(t;t+\Delta t)$ изменение тепловой энергии участка стержня $[l-\Delta x;l]$ происходит за счет поступления тепла через сечение $l-\Delta x$ в количестве Q_1 , через торцевое сечение l в количестве Q_2 и через боковую поверхность в количестве Q_3 . Уравнение баланса тепла запишем в виде

$$\Delta Q = Q_1 + Q_2 + Q_3. \tag{A1}$$

Для каждой составляющей правой части уравнения имеем:

$$\Delta Q = c\rho S \int_{l-\Delta x}^{l} \left[u(x, t + \Delta t) - u(x, t) \right] dx \approx c\rho S \frac{\partial u(x_1, t_1)}{\partial t} \Delta x \Delta t,$$

$$Q_1 = -kS \int_{t}^{t+\Delta t} \frac{\partial u(l-\Delta x, \tau)}{\partial n_1} d\tau \approx -kS \frac{\partial u(l-\Delta x, t_2)}{\partial x} \Delta t,$$

$$Q_2 = k_1 S \int_{t}^{t+\Delta t} \left[u_0 - u(l, \tau) \right] d\tau \approx k_1 S(u_0 - u(l, t_3)) \Delta t,$$

$$Q_3 = k_1 p \int_{t}^{t+\Delta t} \int_{x}^{x+\Delta x} \left[u_0 - u(\xi, \tau) \right] d\xi d\tau \approx k_1 p(u_0 - u(x_2, t_4)) \Delta x \Delta t,$$

где $x_1, x_2 \in (x; x + \triangle x), \quad t_i \in (t; t + \triangle t), \ i = \overline{1, 4}$. Подставим построенные выражения в (A1). Разделим правую и левую часть уравнения на $\triangle t$:

$$c\rho S \frac{\partial u(x_1, t_1)}{\partial t} \triangle x =$$

$$= -kS \frac{\partial u(l - \triangle x, t_2)}{\partial x} + k_1 S[u_0 - u(l, t_3)] + k_1 p[u_0 - u(x_2, t_4)] \triangle x$$

и перейдя к пределу при $\triangle x \to 0$ и $\triangle t \to 0$, получим равенство:

$$-kS\frac{\partial u(l,t)}{\partial x} + k_1S[u_0 - u(l,t)] = 0,$$

которое можно переписать в виде

$$u_x(l,t) + h[u(l,t) - u_0] = 0,$$

где $h=\frac{k_1}{k}$. Таким образом, краевая задача при указанных условиях формулируется следующим образом: найти решение уравнения

$$u_t = a^2 u_{xx} - \beta(u - u_0), \quad 0 < x < l, \ t > 0,$$

удовлетворяющее начальному условию

$$u(x,0) = \varphi(x), \quad 0 \le x \le l$$

и граничным условиям

$$u(0,t) = 0$$
, $u_x(l,t) + h(u(l,t) - u_0) = 0$ $t \ge 0$.

Замечание. Рассматривая малый участок стержня, примыкающий к концу x=0, можно построить граничное условие при x=0, описывающее процесс конвективного теплообмена на торцевом сечении x=0 со средой с заданной температурой u_0 :

$$u_x(0,t) - h_1(u(0,t) - u_0) = 0.$$

Обратите внимание на изменение знака (объясните, почему это произошло). Если свойства окружающей среды одинаковы в областях, примыкающих к обоим концам однородного стержня, то $h = h_1$. \triangleleft

Пример 2. Построить граничные условия для задачи о малых поперечных колебаниях упругого однородного стержня длиной l при различных способах крепления его концов: неподвижном, упругом и свободном. Считать, что на стержень не действуют внешние силы, кроме упругих сил со стороны элементов крепления.

Решение.⊳ Если концы стержня фиксированы неподвижно (жестко закреплены), то граничные условия очевидны:

$$u(0,t) = 0$$
 и $u(l,t) = 0$, $\forall t \ge 0$.

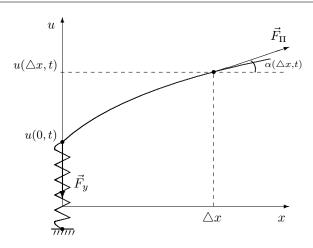
Если же концы стержня свободны или закреплены упруго, то граничные условия могут быть получены из соотношений, выражающих второй закон Ньютона для граничных элементов.

Пусть конец x=0 закреплен упруго (например, прикреплен к пружине, см. рис.3). Заметим, что при условии малых колебаний для угла между касательной к мгновенному профилю стержня в момент времени t в точке с абсциссой $\triangle x$ и осью абсцисс x имеем $\alpha(\triangle x,t)\approx u_x(\triangle x,t)$. Справа на граничный элемент $(0;\triangle x)$, примыкающий к концу x=0, действует остальная часть стержня с силой \vec{F}_Π , вертикальная проекция которой равна

$$T_0u_x(\triangle x,t),$$

а слева — упругая опора с силой \vec{F}_y , величина которой определяется в соответствии с законом Гука:

$$-k \cdot u(0,t),$$



 $Puc.\ 3.$ Мгновенный профиль участка стержня $(0; \triangle x)$ в момент времени t.

где k – коэффициент упругости пружины. Поэтому второй закон Ньютона для рассматриваемого элемента выразится уравнением:

$$\rho \triangle x u_{tt} = T_0 u_x(\triangle x, t) - k u(0, t).$$

Переходя к пределу при $\Delta x \to 0$, получим граничное условие для конца x=0 в виде

$$T_0 u_x(0,t) - ku(0,t) = 0$$

или

$$u_x(0,t) - hu(0,t) = 0,$$
 (B1)

где $h = \frac{k}{T_0}$.

Для конца x=l знак при h в условии будет иным. Действительно, рассмотрим элемент $(l-\Delta x;l)$, примыкающий к левому концу x=l. Так как к его правому концу приложена упругая сила

$$-k \cdot u(l,t)$$
,

а левый конец испытывает действие со стороны левой оставшейся части стержня с силой, вертикальная проекция которой в данном случае будет равна

$$-T_0 \cdot u_x(l-\triangle x,t),$$

то уравнение, выражающее второй закон Ньютона для этого элемента, имеет вид

$$\rho \triangle x u_{tt} = -T_0 u_x (l - \triangle x, t) - k u(l, t).$$

Отсюда, переходя к пределу при $\triangle x \to 0$, получим

$$u_x(l,t) + hu(l,t) = 0, (B2)$$

где коэффициент h имеет прежнее значение, если стержень однороден, а коэффициенты упругости пружин закрепления обоих концов одинаковы.

Замечание. При выводе условия (B2) было использовано следующее приближенное равенство: $\alpha(l-\triangle x,t)\approx -u_x(l-\triangle x,t)$, где $\alpha(l-\triangle x,t)$ – острый угол между касательной к мгновенному профилю стержня в момент времени t в точке с абсциссой $l-\triangle x$ и осью абсцисс x. Покажите его справедливость. Если конец стержня свободный, то отсутствует сила реакции со стороны элементов крепления. Так что, полагая в полученных условиях (B1) и (B2) коэффициент k=0, а значит, и h=0, определим граничные условия задачи в случае свободных концов

$$u_x(0,t) = 0$$
 и $u_x(l,t) = 0$.

Упражнения

- 7. Поставить задачу о вынужденных колебаниях закрепленной на концах x=0 и x=l горизонтальной однородной струны, если в момент t=0 струна имела форму $\varphi(x), 0 \le x \le l$ и скорость струны в каждой ее точке задается функцией $\psi(x)$.
- 8. Дать постановку задачи о свободных колебаниях закрепленной на конце x=l горизонтальной однородной струны, левый конец которой (x=0) движется так, что касательная в этом конце (при $x\to 0+$) в любой момент времени горизонтальна. В момент t=0 струна имела форму $\phi(x)$ и нулевые начальные скорости.
- 9. Дать постановку задачи о распределении температуры внутри однородного изотропного стержня, начальная температура которого равна u_o , при свободном внутреннем теплообмене, если левый его конец (x=0) поддерживается при постоянной температуре u_o , а через правый конец (x=l>0) происходит теплообмен с окружающей средой, температура которой задана функцией $\phi(t)$.
- 10. Сформулировать задачу о продольных колебаниях однородного упругого стержня постоянного сечения S длины l при произвольных

начальных отклонении и скорости для случаев, когда:

- 1) концы стержня свободны;
- 2) к концам стержня x=0 и x=l, начиная с момента t=0, приложены силы F(t) и G(t) соответственно, действующие вдоль оси x;
- 3) концы стержня закреплены упруго, т.е. испытывают сопротивление, пропорциональное их отклонению;
- 4) конец стержня x=0 испытывает сопротивление, пропорциональное скорости, а конец x=l закреплен жестко;
- 5) начиная с момента t=0, стержень испытывает действие направленной вдоль оси x силы (вызванной, например, магнитным полем) объемной плотности F(x,t), а концы стержня закреплены жестко;
- 6) стержень (на единицу массы) испытывает действие пропорциональной скорости силы сопротивления отклонению, а концы стержня x=0 и x=l колеблются по заданным законам $\mu(t)$ и $\nu(t)$ соответственно;
- 7) конец стержня x=0 закреплен, а конец x=l свободен, и к нему прикреплена сосредоточенная масса m.
- 11. Сформулировать задачу о малых продольных колебаниях упругого однородного стержня переменного сечения S=S(x) длины l при произвольных начальных условиях для случаев, когда:
- 1) стержень имеет форму усеченного конуса с радиусами оснований r и $R \ (r < R)$, которые закреплены жестко;
- 2) конец стержня x=0 закреплен упруго, а к концу x=l, начиная с момента t=0, приложена продольная сила F(t) на единицу площади сечения.
- **12.** Боковая поверхность однородного стержня $(0 \le x \le l)$ теплоизолирована, а его начальная (при t=0) температура равна $\phi(x)$. Сформулировать задачу об определении температуры u(x,t) в стержне при t>0 для случаев, когда:
- 1) концы стержня теплоизолированы;
- 2) на концах x=0 и x=l стержня, начиная с момента t=0, поддерживаются тепловые потоки q(t) и Q(t) соответственно;
- 3) на концах x=0 и x=l стержня происходит конвективный теплообмен по закону Ньютона со средами, примыкающими к этим концам и имеющими температуру $\tau(t)$ и $\theta(t)$ соответственно;
- 4) на конце x=l стержня имеется сосредоточенная масса m из того же материала, что и стержень, и этот конец теплоизолирован, а на конце x=0, начиная с момента времени t=0, поддерживается температура $\mu(t)$;

- 5) на обоих концах стержня имеются одинаковые сосредоточенные массы m из того же материала, что и стержень, причем конец x=0 теплоизолирован, а на конце x=l, начиная с момента t=0, поддерживается тепловой поток q(t).
- 13. В трубке длиной l постоянного сечения S, однородно заполненной пористым веществом, происходит диффузия газа с начальной (при t=0) концентрацией $\phi(x)$. Поставить задачу об определении концентрации u(x,t) газа в трубке при t>0, считая боковую поверхность трубки газонепроницаемой, для случаев, когда:
- 1) на конце x=0, начиная с момента t=0, поддерживается концентрация газа, равная $\mu(t),$ а конец x=l газонепроницаем;
- 2) на конце x=0, начиная с момента t=0, поддерживается поток газа q(t), а конец x=l перекрыт пористой перегородкой, т.е. на этом конце происходит газообмен с внешней средой по закону, аналогичному закону Ньютона для конвективного теплообмена, причем концентрация газа во внешней среде предполагается нулевой.
- 14. Однородный стержень $(0 \le x \le l)$ постоянного сечения S имеет начальную (при t=0) температуру $\phi(x)$. На поверхности стержня происходит конвективный теплообмен по закону Ньютона со средой, имеющей температуру v(t), а его концы x=0 и x=l зажаты в массивные клеммы с заданными теплоемкостями C и Q соответственно и достаточно большой теплопроводностью. Сформулировать задачу об определении температуры u при t>0 в этом стержне для случаев, когда:
- 1) стержень нагревается текущим по нему постоянным электрическим током силы I;
- 2) начиная с момента t=0 в стержне действуют тепловые источники объемной плотности F(x,t);
- 3) тепло в стержне поглощается пропорционально u_t в каждой его точке.
- **15.** Трубка $(0 \le x \le l)$ постоянного сечения S наполнена газом, начальная (при t=0) концентрация которого равна $\phi(x)$. Поверхность и торцы трубки пористые, так что через них происходит обмен концентрацией (по закону, аналогичному закону Ньютона для конвективного теплообмена) с внешней средой. Концентрация газа во внешней среде равна v(t). Поставить краевую задачу об определении концентрации газа u при t>0 в трубке, когда:
- 1) частицы газа распадаются (например, неустойчивый газ), причем

скорость распада газа в каждой точке полости трубки пропорциональна корню квадратному из его концентрации;

- 2) частицы газа размножаются со скоростью, пропорциональной произведению uu_t в каждой точке полости трубки.
- **16.** Однородный шар радиусом R с центром в начале координат нагрет до температуры T. Поставить краевую задачу об остывании шара для случаев, когда:
- 1) в каждой точке этого шара вследствие химической реакции поглощается количество тепла, пропорциональное температуре u в этой точке, а поверхность S шара теплоизолирована;
- 2) в шаре имеются тепловые источники постоянной мощности Q, а на его поверхности S происходит конвективный теплообмен с внешней средой нулевой температуры.
- 17. Поставить краевую задачу об определении установившейся (стационарной) концентрации неустойчивого газа в цилиндре радиусом r_o и высотой h, если в цилиндре имеются источники газа (вследствие химической реакции) постоянной мощности Q, а скорость распада газа пропорциональна его концентрации u, для случаев, когда:
- 1) на основаниях цилиндра z=0 и z=h концентрация газа поддерживается равной нулю, а боковая поверхность цилиндра газонепроницаема;
- 2) основания z=0 и z=h цилиндра пористы (через них происходит диффузия по закону, аналогичному закону Ньютона для конвективного теплообмена), а на боковой поверхности поддерживается нулевая концентрация газа, при этом концентрация рассматриваемого газа во внешней среде равна нулю.

Глава IV.

Свойства гармонических функций. Краевые задачи для уравнений эллиптического типа

§1. Уравнение Лапласа. Свойства гармонических функций

К простейшим уравнениям эллиптического типа относится уравнение Лапласа:

$$\Delta u = 0, \tag{1.1}$$

где Δ – оператор Лапласа.

Записи оператора Лапласа

а) в декартовых ортогональных координатах x, y, z:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}; \tag{1.2}$$

б) в цилиндрических координатах r, ϕ, z :

$$\Delta = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}, \tag{1.3}$$

$$x = r\cos\phi, \quad y = r\sin\phi, \quad z = z;$$

в) в сферических координатах r, ϕ, θ :

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}, \quad (1.4)$$

 $x = r \cos \phi \sin \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \theta$.

Под функцией класса $C^m(G \cup S)$, где G — область пространства R^n с границей S, понимается однозначная функция, непрерывная в $G \cup S$ вместе с ее частными производными порядка m. При m=0 имеем класс непрерывных в $G \cup S$ функций — $C(G \cup S)$.

Вещественнозначная функция u(x) класса $C^2(G)$ называется *гармо- нической в области G*, если она удовлетворяет в этой области уравнению Лапласа.

Пример 1. Показать, что функция $w(r) = \frac{1}{4\pi r}e^{-kr}$, где k-const и $r = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$, является решением уравнения:

$$u_{xx} + u_{yy} + u_{zz} - k^2 u = 0. (A1)$$

Решение. Воспользуемся выражением для оператора Лапласа в сферической системе координат (1.4). Для функции u = u(r) будем иметь:

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{du}{dr} \right) = \frac{1}{r} \frac{d^2}{dr^2} \left(ru \right).$$

Справедливость последнего равенства легко установить путем непосредственного дифференцирования.

Тогда в сферической системе координат для функций u=u(r) уравнение (A1) примет вид:

$$\frac{1}{r}\frac{d^2}{dr^2}(ru) - k^2u = 0. (A2)$$

Так как для функции $w(r) = \frac{1}{4\pi r} e^{-kr}$ имеем

$$\frac{d^2}{dr^2}(rw) = \frac{k^2}{4\pi}e^{-kr},$$

то, подставляя выражение для w(r) в уравнение (A2), получим верное равенство. Следовательно, заданная функция w(r) является решением уравнения (A1). \triangleleft

• Если выражение для функции u в сферической системе координат зависит только от одной координаты – радиуса r, то будем говорить, что функция u=u(r) обладает $c\phi$ ерической симметрией.

Упражнения

- 1. Найти выражение оператора Лапласа:
 - а) в криволинейных координатах $x=\phi(\xi,\eta), \quad y=\psi(\xi,\eta);$
 - б) в полярных координатах $x = r \cos \phi$, $y = r \sin \phi$;

в) в сплюснутых сфероидальных координатах

$$x = \xi \eta \sin \phi, \quad y = \sqrt{(\xi^2 - 1)(1 - \eta^2)}, \quad z = \xi \eta \cos \phi.$$

- **2.** Покажите, что функция $u(r) = \ln \frac{1}{r}$, $r^2 = x^2 + y^2$, является гармонической на всей плоскости, исключая точку в начале координат, которой соответствует r=0.
- **3.** Покажите, что функция $u(r)=\frac{1}{r},\quad r^2=x^2+y^2+z^2,$ является гармонической во всем пространстве, кроме начала координат, которому соответствует r=0.
- **4.** Вычислить производную $\frac{\partial u}{\partial n}$ по внешней нормали n к границе S области D в точках экстремума функции u :
 - 1) u = xy, $\overline{D} = \{(x, y): x^2 + y^2 \le 1\}$;
 - 2) $u = x^2 y^2$, $\overline{D} = \{(x, y) : \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$.
- 5. Показать, что формула

$$u(x,y) = e^{\lambda x + \mu y} v(x,y),$$

где v(x,y) — произвольная гармоническая функция, дает общее решение уравнения эллиптического типа:

$$u_{xx} + u_{yy} - 2\lambda u_x - 2\mu u_y + (\lambda^2 + \mu^2)u = 0$$

с постоянными коэффициентами λ и μ .

§2. Простейшие краевые задачи для уравнений Лапласа и Пуассона

В теории гармонических функций важную роль играют краевые задачи Дирихле и Неймана, или первая и вторая краевые задачи соответственно.

Задача Дирихле: найти гармоническую в области G функцию u(x) класса $C(G \cup S)$, удовлетворяющую краевому условию

$$u(x) = \phi(x), \quad x \in S,$$

где $\phi(x)$ – заданная на S непрерывная функция.

Задача Неймана: определить гармоническую в области G с гладкой

границей S функцию u(x) класса $C^1(G \cup S)$, удовлетворяющую краевому условию

$$\frac{\partial u}{\partial n} = \phi(x), \quad x \in S,$$

где n — внешняя нормаль κ поверхности $S,\ a\ \phi(x)$ — заданная на S непрерывная функция.

Необходимым и достаточным условием разрешимости задачи Неймана является условие

$$\int_{S} \frac{du}{dn} \, ds = 0. \tag{*}$$

Задача Неймана поставлена правильно, если ее решение удовлетворяет условию (*).

Пример 1. Найти решение уравнения $\Delta u = Ar + B$ внутри сферы r < a, если на сфере выполняется граничное условие $u|_{r=a} = 0$, а внутри сферы функция u ограничена.

Решение. Вид правой части уравнения и граничного условия позволяет сделать вывод о том, что искомая функция обладает сферической симметрией, т.е. ее значения зависят только от одной переменной – радиуса r. Так что функция u=u(r) удовлетворяет обыкновенному дифференциальному уравнению:

$$\frac{1}{r}\frac{d^2}{dr^2}(ru) = Ar + B. \tag{A1}$$

Здесь мы воспользовались выражением для оператора Лапласа в сферической системе координат применительно к функциям, обладающим сферической симметрией (см. пример $1,\ \S 1$). Общее решение уравнения (A1) имеет вид

$$u(r) = \frac{1}{12}Ar^3 + \frac{1}{6}Br^2 + c_1 + \frac{c_2}{r},$$

где c_1, c_2 – произвольные постоянные. В силу условия ограниченности решения внутри сферы имеем $c_2 = 0$. Подчиняя общее решение заданному граничному условию, найдем

$$c_1 = -\frac{1}{12}Aa^3 - \frac{1}{6}Ba^2.$$

Следовательно, получаем решение заданной краевой задачи в виде

$$u(r) = \frac{1}{12}A(r^3 - a^3) + \frac{1}{6}B(r^2 - a^2). \triangleleft$$

Упражнения

6. Найти условие, при соблюдении которого в круге $x^2 + y^2 = r^2 < R^2$ правильно поставлена задача Неймана

$$\Delta u(x, y) = 0, \quad 0 \le r < R,$$

$$\frac{\partial u(x,y)}{\partial r} = g(x,y), \quad r = R,$$

если:

- 1) g(x,y) = A; 2) $g(x,y) = 2x^2 + A;$
- 3) $g(x,y) = Ay^2 B;$ 4) $g(x,y) = Ax^2 By^2 + y.$

Здесь A, B – постоянные.

- 7. Внутри кольца $a < r < b, \quad 0 \le \phi \le 2\pi$ найти решение u(r) краевых задач:
 - 1) $\Delta u(r) = 0$, u(a) = T, u(b) = U;
 - 2) $\Delta u(r) = 0$, u(a) = T, $u_r(b) = U$;
 - 3) $\Delta u(r) = 0$, $u_r(a) = T$, $u_r(b) = U$;
 - 4) $\Delta u(r) = 0$, u(a) = T, $u_r(b) + hu(b) = U$;
 - 5) $\Delta u(r) = 0$, $u_r(a) hu(a) = T$, $u_r(b) = U$;
 - 6) $\Delta u(r) = 0$, u(a) = T, u(c) = hu(b), $a < c < b, h \neq 0$.

Здесь T, U – заданные постоянные.

- **8.** Пусть u(r) гармоническая функция в кольце $K: a < r < b, 0 \le \phi \le 2\pi, 0 < a < b < \infty$, непрерывная в \overline{K} .
 - 1) Чему равно u(a), если u(c) = T, $u_r(b) + hu(b) = W$.
 - 2) Чему равны u(a) и u(b), если $u_r(c) = U$, u(d) = T.
 - 3) Чему равно u(b), если $u(c) = T_0$, u(a) = T.

Здесь a < c < b, a < d < b и T, T_0, U, W — заданные постоянные.

9. Пусть u(r) — решение уравнения Пуассона $\Delta u(r) = ar$, $a = const \neq 0$, в круге $K: x^2 + y^2 = r^2 < R^2$, непрерывное в \overline{K} . Определить:

- 1) значение u(R), если u(c) = T;
- 2) такое значение R, при котором u(R) = T, $u(c) = T_0$.

Здесь $0 \le c < R$ и T_0, T – заданные постоянные.

- **10.** Пусть u(r) решение уравнения Пуассона $\Delta u(r)=\frac{1}{r},$ в кольце $K:a^2< x^2+y^2=r^2< b^2,$ непрерывное в $\overline{K}.$ Определить значения:
 - 1) u(a), если $u(b) = T_0$, u(c) = T;
 - 2) u(a), если u(b) = T, $u_r(c) = U$;
 - 3) $u_r(a)$ и u(b), если u(c) = T, $u_r(d) = U$.

Здесь $a < c < b, \ a < d < b,$ а T_0, T, U — заданные постоянные.

11. В шаре $D: x^2+y^2+z^2=r^2 < R^2$ найти решение $u(r) \in C^2(D) \cap C(\overline{D})$ задачи

$$\Delta u(r) = f(r), \quad 0 \le r < R, \quad u(R) = T = const.$$

- 12. В однородном шаре $x^2+y^2+z^2=r^2< R^2$ действуют постоянные источники тепла объемной плотности 6Q. Считая температуру u(r) в шаре стационарной, а температуру u(R) поверхности шара постоянной, определить такие значения:
 - 1) u(R), чтобы u(a) = T;
 - 2) u(R) и Q, чтобы $u(c) = T_0$, u(d) = T;
 - 3) u(R) и Q, чтобы u(a) = T, $u_r(b) = U$;
 - 4) R, чтобы $u(0) = T_0$, u(R) = T.

Здесь $0 \le a < R$, $0 < b \le R$, $0 \le c < R$, $0 \le d < R$, $c \ne d$, а T, T_0, U — заданные постоянные.

- **13.** Пусть функция u(r) гармоническая в шаровом слое $D: a < r < b, \quad r = \sqrt{x^2 + y^2 + z^2}, \quad 0 < a < b < \infty,$ и непрерывная в \overline{D} . Определите значения:
 - 1) u(a), если $u(c) = T_0$, u(b) = T;
 - 2) u(a), если u(c) = T, $u_r(b) = U$;

- 3) u(a), если u(c) = T, $u_r(b) + hu(b) = W$;
- 4) u(a) и u(b), если u(c) = T, $u_r(d) = U$.

Здесь $a < c < b, \quad a < d < b, \quad c \neq d,$ и T_0, T, U, W — заданные постоянные.

- 14. Определить стационарное распределение температуры внутри сферического слоя a < r < b, если сфера r = a поддерживается при постоянной температуре T_1 , а сфера r = b при постоянной температуре T_2 .
- **15.** В однородном шаровом слое a < r < b, $r = \sqrt{x^2 + y^2 + z^2}$, $0 < a < b < \infty$, действуют источники тепла объемной плотности 2Q/r.
 - 1) Определить стационарное распределение температуры u(r) в этом слое, если $u_r(a) = U$, u(b) = T.
 - 2) При стационарном распределении температуры u(r) определите значение u(a), если u(b) = T, $u_r(b) = U$.
 - 3) При стационарном распределении температуры u(r) определите такое значение Q, чтобы $u(a)=T_0$ при u(b)=T, $u_r(b)=U$.
- 16. Толстая стенка неограниченной цилиндрической трубы a < r < c состоит из двух однородных слоев a < r < b и b < r < c, коэффициенты теплопроводности материалов которых k_1 и k_2 соответственно. На внешней поверхности стенки трубы поддерживается постоянная температура T и поток Q. Какую постоянную температуру надо поддерживать у заполняющей трубу охлаждающей жидкости, чтобы температура стенки трубы была стационарной. Предполагается, что температура внутренней стенки трубы совпадает с температурой охлаждающей жидкости.

Глава V.

Аналитические методы решения краевых задач математической физики

§1. Преобразование краевых задач

В математической физике разработан ряд методов, которые применяются к решению краевых задач определенного вида. На практике часто исходная постановка задачи не позволяет непосредственно применить выбранный метод или воспользоваться известными формулами, определяющими решение (такими, например, как формулы Даламбера и Пуассона). Однако существуют различные приемы преобразования или редукции (сведения) краевых задач к виду, который, возможно, будет удовлетворять условиям применимости того или иного метода решения. Одним из таких приемов является введение новых переменных, с его помощью, например, заданное уравнение можно привести к каноническому виду (см. главу II). Некоторые приемы преобразования задач рассмотрены в примере и предлагаемых упражнениях.

Пример 1. Рассмотрим смешанную задачу: в области $0 < x < l, \ t > 0$ найти решение уравнения

$$u_{tt} = a^2 u_{xx} + f(x),$$
 (A1₁)

удовлетворяющее граничным условиям:

$$a_1 u_x(0,t) + b_1 u(0,t) = \mu_1,$$

$$a_2 u_x(l,t) + b_2 u(l,t) = \mu_2,$$

$$a_k, b_k, \mu_k - const, \quad a_k^2 + b_k^2 \neq 0, \ k = 1, 2$$
(A1₂)

и начальным условиям

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x).$$
 (A1₃)

Покажем, что сформулированная неоднородная задача (А1) может быть

приведена к виду однородной смешанной задачи (с однородным уравнением и однородными граничными условиями).

Действительно, пусть функция w = w(x) является решением задачи:

$$a^{2}w''(x) = -f(x), \quad 0 < x < l,$$

$$a_{1}w'(0) + b_{1}w(0) = \mu_{1},$$

$$a_{2}w'(l) + b_{2}w(l) = \mu_{2}.$$
(A2)

Будем искать решение задачи (А1) в виде:

$$u(x,t) = v(x,t) + w(x), \tag{A3}$$

где v(x,t) – неизвестная функция. Подставим выражение (A3) в уравнение (A1₁):

$$v_{tt} = a^2 v_{xx} + a^2 w''(x) + f(x).$$

Откуда, зная, что w(x) — решение задачи (A2), получим однородное уравнение для функции v :

$$v_{tt} = a^2 v_{xx}.$$

Далее подставим выражение (A3) в граничные условия ($A1_2$):

$$a_1(v_x(0,t) + w'(0)) + b_1(v(0,t) + w(0)) = \mu_1,$$

$$a_2(v_x(l,t) + w'(l)) + b_2(v(l,t) + w(l)) = \mu_2.$$

Откуда, учитывая условия задачи (A2) для функции w(x), получим однородные граничные условия для функции v(x,t). Осталось подчинить выражение (A3) начальным условиям (A13), чтобы получить начальные условия для функции v:

$$v(x,0) = \varphi(x) - w(x), \quad v_t(x,0) = \psi(x).$$

Следовательно, если искать решение задачи (A1) в виде суммы двух функций (A3), одна из которых w(x) является решением задачи (A2), то вторая функция v(x,t) должна быть решением следующей однородной задачи:

$$v_{tt} = a^{2}v_{xx}, \quad 0 < x < l, \ t > 0,$$

$$a_{1}v_{x}(0,t) + b_{1}v(0,t) = 0,$$

$$a_{2}v_{x}(l,t) + b_{2}v(l,t) = 0,$$

$$v(x,0) = \varphi(x) - w(x), \quad u_{t}(x,0) = \psi(x).$$
(A4)

Таким образом, найдя решение w=w(x) задачи (A2), с помощью преобразования (A3) неоднородная задача (A1) сводится к однородной задаче (A4) относительно новой функции v.

Замечание. Можно показать, что для произвольной функции f(x) условием разрешимости задачи (A2) является выполнение следующего неравенства: $a_1b_2 - a_2b_1 - b_1b_2l \neq 0$. ⊲

Упражнения

1. Покажите, что задачу

$$u_{xy} + au_x + bu_y = 0$$
, $u(0, y) = e^{-ay}$, $u(x, 0) = 1$,

полагая

$$u(x,y) = e^{-ay-bx} \cdot v(x,y), \quad \xi = ax, \quad \eta = by,$$

можно свести к задаче относительно новой функции $v(\xi, \eta)$:

$$v_{\xi\eta} = v$$
, $v(0,\eta) = 1$, $v(\xi,0) = e^{\frac{b}{a}\xi}$.

2. Покажите, что решение задачи

$$u_{tt} + 2\beta u_t + \beta^2 u = a^2 u_{xx}, \quad 0 < x < l, \ t > 0,$$

$$u(0,t) = u(l,t) = 0, \quad u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x),$$

представимо в виде

$$u = e^{-\beta t}v,$$

где v(x,t) – решение задачи

$$v_{tt} = a^2 v_{xx}, \quad 0 < x < l, \ t > 0,$$

$$v(0, t) = v(l, t) = 0, \quad v(x, 0) = \phi(x), \quad v_t(x, 0) = \psi(x) + \beta \phi(x).$$

3. Покажите, что решение задачи

$$u_{tt} = a^2 u_{xx} + f(x), \quad 0 < x < l, \ t > 0,$$

 $u(0,t) = u(l,t) = 0, \quad u(x,0) = u_t(x,0) = 0$

представимо в виде u(x,t) = v(x) + w(x,t), где v(x) – решение уравнения $a^2v''(x) + f(x) = 0$, удовлетворяющее однородным краевым условиям v(0) = v(l) = 0, а w(x,t) – решение задачи

$$w_{tt} = a^2 w_{xx}, \quad 0 < x < l, \ t > 0,$$

$$w(0, t) = w(l, t) = 0, \quad w(x, 0) = -v(x), \quad w_t(x, 0) = 0.$$

4. Пусть v(x,t, au) – решение задачи

$$v_{tt} - v_{xx} = 0, \ x \in G, \ t > \tau,$$

$$v(x, \tau, \tau) = 0, \quad v_t(x, \tau, \tau) = g(x, \tau).$$

Покажите, что функция

$$u(x,t) = \int_0^t v(x,t,\tau) \, d\tau$$

является решением уравнения

$$u_{tt} - u_{xx} = g(x, t),$$

удовлетворяющим однородным начальным условиям

$$u(x,0) = u_t(x,0) = 0.$$

5. Редуцировать краевую задачу для уравнения

$$u_{xx} + pu_x - u_y + \frac{p^2}{4}u = 0$$
, $p = const$,

в прямоугольнике, ограниченном прямыми $x=0,\ x=\pi,\ y=0,\ y=T>0,$ с условиями

$$u(0,y) = u(\pi,y) = 0, \quad 0 \le y \le T,$$

 $u(x,0) = \sin x \cdot e^{-\frac{p}{2}x}, \quad 0 \le x \le \pi,$

к краевой задаче для уравнения, не содержащего частной производной первого порядка по x и неизвестной функции.

6. Покажите, что функцию, удовлетворяющую условиям:

$$a_1 u_x(0,t) + b_1 u(0,t) = \mu(t),$$

$$a_2 u_x(l,t) + b_2 u(l,t) = \nu(t),$$

$$a_i^2 + b_i^2 \neq 0, \quad i = 1, 2,$$

можно искать в виде

$$u(x,t) = (A_1x^2 + B_1x + C_1)\mu(t) + (A_2x^2 + B_2x + C_2)\nu(t).$$

- 7. Приведите примеры функций, удовлетворяющих условиям:
 - 1) u(0,t) = t, u(l,t) = l + t;
 - 2) $u_x(0,t) = u(1,t) = t;$
 - 3) $u(0,t) = \mu(t), \quad u(l,t) = \nu(t);$
 - 4) $u_x(0,t) = \mu(t), \quad u(l,t) = \nu(t);$

- 5) $u(0,t) = \mu(t), \quad u_x(l,t) = \nu(t);$
- 6) $u_x(0,t) = \mu(t), \quad u_x(l,t) = \nu(t);$
- 7) $u_x(0,t) hu(0,t) = \mu(t), \quad u(l,t) = \nu(t);$
- 8) $u_x(0,t) hu(0,t) = \mu(t), \quad u_x(l,t) + hu(l,t) = \nu(t).$
- 8. Редуцировать первую краевую задачу для уравнения

$$u_{xx} - u_t = f(x,t)$$

в прямоугольнике 0 < t < T, 0 < x < 1 с неоднородными условиями на боковых сторонах $u(0,t) = \mu(t), \quad u(1,t) = \nu(t), \quad 0 < t < T,$ к первой краевой задаче с однородными краевыми условиями на боковых сторонах.

9. Покажите, что решение задачи

$$\begin{aligned} u_t &= a^2 u_{xx}, & 0 < x < l, \ t > 0, \\ u(x,0) &= \phi(x), & 0 \le x \le l, \\ u(0,t) &= u_0, & u(l,t) = u_1, \ t \ge 0, & u_0, \ u_1 - const, \end{aligned}$$

можно искать в виде $u(x,t)=\overline{u}(x)+v(x,t),$ где $\overline{u}(x)$ – стационарная температура стержня, определяемая условиями

$$\overline{u}''(x) = 0$$
, $\overline{u}(0) = u_0$, $\overline{u}(l) = u_1$,

а функция v(x,t) — отклонение от стационарной температуры — является решением краевой задачи

$$v_t = a^2 v_{xx}, \quad 0 < x < l, \ t > 0,$$

$$v(0, t) = v(l, t) = 0, \quad t \ge 0,$$

$$v(x, 0) = \phi(x) - \overline{u}(x), \quad 0 < x < l.$$

10. Покажите, что решение *задачи со стационарными неоднородностя- ми*

$$u_{tt} = a^2 u_{xx} + f(x), \quad 0 < x < l, \ t > 0,$$

$$u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 \le x \le l,$$

$$u(0,t) = u_1, \quad u(l,t) = u_2, \ t \ge 0, \quad u_1, \ u_2 - const,$$

можно искать в виде $u(x,t) = \overline{u}(x) + v(x,t)$, где $\overline{u}(x)$ – стационарное состояние (струны, стержня), определяемое условиями

$$a^2 \overline{u}''(x) + f(x) = 0$$
, $\overline{u}(0) = u_1$, $\overline{u}(l) = u_2$,

а функция v(x,t) – отклонение от стационарного состояния – является решением краевой задачи

$$v_{tt} = a^2 v_{xx}, \quad 0 < x < l, \ t > 0,$$

$$v(0,t) = v(l,t) = 0, \quad t \ge 0,$$

$$v(x,0) = \phi(x) - \overline{u}(x), \quad v_t(x,0) = \psi(x), \quad 0 < x < l.$$

- Замечание. Для задач со стационарными неоднородностями удобнее выделять стационарное решение и искать отклонение от этого решения.
- 11. Покажите, что решение краевой задачи

$$\begin{aligned} u_t &= a^2 \left(u_{rr} + \tfrac{2}{r} u_r \right), \quad R < r < 2R, \ t > 0, \\ u_r|_{r=R} &= 0, \quad u_r + h u|_{r=2R} = 0, \quad u(r,0) = u_0, \end{aligned}$$

представимо в виде $u(r,t)=rac{v}{r}$, где v(r,t) – решение краевой задачи

$$v_t = a^2 v_{rr}, \quad R < r < 2R, \ t > 0,$$

 $Rv_r - v|_{r=R} = 0, \quad 2Rv_r + (2Rh - 1)v|_{r=2R} = 0,$
 $v(r, 0) = ru_0.$

12. Рассмотрим краевую задачу

$$u_t + u \cdot u_x = a^2 u_{xx}, \quad 0 < x < l, \quad t > 0,$$

 $u(0,t) = u(l,t) = 0, \quad t \ge 0,$
 $u(x,0) = f(x), \quad 0 \le x \le l.$

Покажите, если функция v(x,t) является решением задачи

$$v_t = a^2 v_{xx}, \quad 0 < x < l, \ t > 0,$$

 $v_x(0, t) = v_x(l, t) = 0, \quad t \ge 0,$

$$v(x,0) = c_0 \cdot e^{-\frac{1}{2a^2} \int_0^x f(\xi) d\xi} = v_0(x),$$

то функция

$$u(x,t) = -2a^2 \cdot \frac{v_x}{v}$$

удовлетворяет уравнению

$$u_t + u \cdot u_x = a^2 u_{xx}.$$

§2. Формула Даламбера для волнового уравнения. Метод продолжения

Рассмотрим задачу Коши для волнового уравнения на прямой: B области $D: -\infty < x < \infty, t > 0$ найти решение u = u(x,t) уравнения

$$u_{tt} = a^2 u_{xx} + f(x, t), (2.1)$$

удовлетворяющее начальным условиям

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x).$$
 (2.2)

Решение задачи (2.1)-(2.2) описывается формулой Даламбера

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) \, d\xi + \frac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) \, d\xi \, d\tau.$$
 (2.3)

Первые два слагаемых в формуле (2.3) описывают свободные колебания (за счет начальных отклонений и скоростей), последнее – вынужденные (за счет действия внешних сил).

Пример 1. Найти решение уравнения:

$$u_{tt} - u_{xx} + 2u_t + 4u_x - 3u = e^{2x - t}x\sin t, \quad |x| < +\infty, \ t > 0,$$
 (A1)

удовлетворяющее условиям:

$$u(x,0) = e^{2x} \sin x,\tag{A2}$$

$$u_t(x,0) = e^{2x}(\cos x - \sin x). \tag{A3}$$

Решение.⊳ Будем искать решение уравнения (А1) в виде:

$$u(x,t) = e^{\alpha x + \beta t} v(x,t), \tag{A4}$$

где α и β таковы, что уравнение, которому должна удовлетворять функция v(x,t), не содержит первых производных по переменным x и t. Так как

$$u_{x} = e^{\alpha x + \beta t} (\alpha v + v_{x}),$$

$$u_{t} = e^{\alpha x + \beta t} (\beta v + v_{t}),$$

$$u_{xx} = e^{\alpha x + \beta t} (\alpha^{2} v + 2\alpha v_{x} + v_{xx}),$$

$$u_{tt} = e^{\alpha x + \beta t} (\beta^{2} v + 2\beta v_{t} + v_{tt}),$$
(A5)

то подставляя выражение (A4) и (A5) в уравнение (A1), построим систему для нахождения коэффициентов α и β :

$$\begin{cases} 4 - 2\alpha = 0, \\ 2 + 2\beta = 0. \end{cases}$$

Отсюда получаем $\alpha=2$ и $\beta=-1$. При этом функция v будет входить в уравнение с коэффициентом, равным нулю:

$$\beta^2 + 2\beta - \alpha^2 + 4\alpha - 3 = 0.$$

Таким образом, с помощью преобразования

$$u(x,t) = e^{2x-t}v(x,t) \tag{A6}$$

получаем следующее уравнение для функции v(x,t):

$$v_{tt} - v_{xx} = x \sin t$$
.

Подставляя выражение (A6) в начальные условия (A2)—(A3), получим начальные условия для функции v(x,t):

$$v(x,0) = \sin x,$$
 $v_t(x,0) = e^{-2x}(u(x,0) + u_t(x,0)) = \cos x.$

Таким образом, получили следующую задачу для функции v(x,t):

$$\begin{cases} v_{tt} - v_{xx} = x \sin t, & |x| < \infty, \ t > 0, \\ v(x, 0) = \sin x, & \\ v_t(x, 0) = \cos x. \end{cases}$$
(A7)

Построим решение задачи (А7) с помощью формулы Даламбера:

$$v(x,t) = \frac{\sin(x+t) + \sin(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} \cos \xi d\xi + \frac{1}{2} \int_{0}^{t} \int_{x-(t-\tau)}^{x+(t-\tau)} \xi \sin \tau d\xi d\tau.$$
 (A8)

Найдем интегралы, входящие в выражение (А8):

$$\int_{x-t}^{x+t} \cos \xi d\xi = \sin(x+t) - \sin(x-t) = 2\sin t \cos x,$$

$$\int_{0}^{t} \int_{x-(t-\tau)}^{x+(t-\tau)} \xi \sin \tau d\xi d\tau = \frac{1}{2} \int_{0}^{t} \sin \tau \left((x+t-\tau)^{2} - (x-t+\tau)^{2} \right) d\tau =$$

$$= \frac{1}{2} \int_{0}^{t} 2x(2t-2\tau) \sin \tau d\tau = 2x \int_{0}^{t} (t-\tau) \sin \tau d\tau =$$

$$= 2x \left\{ -(t-\tau) \cos \tau \Big|_{0}^{t} - \int_{0}^{t} \cos \tau d\tau \right\} = 2x \left\{ t - \sin \tau \Big|_{0}^{t} \right\} = 2xt - 2x \sin t.$$

Подставив значения интегралов в (А8), получим:

$$v(x,t) = \sin x \cos t + \sin t \cos x + xt - x \sin t = \sin(x+t) + xt - x \sin t.$$

Возвращаясь к исходной переменной x, получим искомое решение.

Ответ:
$$u(x,t) = e^{2x-t}(\sin(x+t) + xt - x\sin t)$$
.

 \bullet С помощью формулы Даламбера можно доказать единственность и устойчивость решения задачи (2.1)-(2.2), а также ряд других его свойств.

Пример 2. Показать, что если заданные дифференцируемые функции $\varphi(x)$ и $\psi(x)$ таковы, что функции:

$$\tilde{\varphi}(x) \equiv \alpha \varphi'(x) + \beta \varphi(x),$$

 $\tilde{\psi}(x) \equiv \alpha \psi'(x) + \beta \psi(x)$

являются нечетными, то функция u = u(x,t), определяемая формулой Даламбера (2.3), в которой $f(x,t) \equiv 0$, удовлетворяет условию:

$$\alpha u_x(0,t) + \beta u(0,t) = 0$$
 для $\forall t > 0$.

Решение. \triangleright Для функции u = u(x, t) имеем:

$$u_x(x,t) = \frac{\varphi'(x+at) + \varphi'(x-at)}{2} + \frac{1}{2a} \frac{\partial}{\partial x} \left(\int_{x-at}^{x+at} \psi(\xi) d\xi \right) =$$
$$= \frac{\varphi'(x+at) + \varphi'(x-at)}{2} + \frac{\psi(x+at) - \psi(x-at)}{2a}.$$

Тогда

$$\alpha u_x(0,t) + \beta u(0,t) = \alpha \frac{\varphi'(at) + \varphi'(-at)}{2} + \alpha \frac{\psi(at) - \psi(-at)}{2a} +$$

$$+\beta \frac{\varphi(at) + \varphi(-at)}{2} + \frac{\beta}{2a} \int_{-at}^{at} \psi(\xi) \, d\xi. \tag{*}$$

Учитывая, что

$$\psi(at) - \psi(-at) = \int_{-at}^{at} \psi'(\xi) d\xi,$$

равенство (*) можно привести к виду

$$\alpha u_x(0,t) + \beta u(0,t) =$$

$$= \frac{\alpha \varphi'(at) + \beta \varphi(at)}{2} + \frac{\alpha \varphi'(-at) + \beta \varphi(-at)}{2} + \frac{1}{2a} \int_{-at}^{at} (\alpha \psi'(\xi) + \beta \psi(\xi)) d\xi =$$

$$= \frac{1}{2} \tilde{\varphi}(at) + \frac{1}{2} \tilde{\varphi}(-at) + \frac{1}{2a} \int_{-at}^{at} \tilde{\psi}(\xi) d\xi.$$

Откуда, в силу нечетности функций $\tilde{\varphi}$ и $\tilde{\psi}$, заключаем:

$$\alpha u_x(0,t) + \beta u(0,t) = 0. \quad \triangleleft$$

• С помощью формулы Даламбера можно построить решения краевых задач для волнового уравнения, рассматриваемого на полупрямой и отрезке. При этом требуется только подходящим образом продолжить начальные данные на всю прямую. Такой метод решения краевых задач получил название метода продолжения.

Пример 3. Поперечным сечениям полуограниченного упругого стержня с упруго закрепленным концом (x=0) сообщены начальные отклонения $u(x,0)=\varphi(x)$. Начальные же скорости при этом равны нулю. Найти продольные отклонения u(x,t) поперечных сечений стержня при t>0.

Решение.⊳ Краевая задача, описывающая продольные колебания сечений стержня при указанных в формулировке задания условиях, имеет вид:

$$u_{tt} = a^{2}u_{xx}, \quad x > 0, t > 0,$$

$$u_{x}(0, t) - hu(0, t) = 0, \quad t > 0,$$

$$u(x, 0) = \varphi(x), \quad u_{t}(x, 0) = 0, \quad x \ge 0.$$
(A1)

Рассмотрим вспомогательную задачу для функции U=U(x,t):

$$U_{tt} = a^2 U_{xx}, \quad -\infty < x < +\infty, t > 0,$$

$$U(x, 0) = \Phi(x), \quad U_t(x, 0) = 0, \quad -\infty < x < \infty,$$
(A2)

в которой начальная функция $\Phi(x)$ такова, что функция

$$\tilde{\Phi}(x) = \Phi'(x) - h\Phi(x) \tag{A3}$$

является нечетной. Очевидно, что решение задачи (A2) определяется формулой Даламбера с одной начальной функцией $\Phi(x)$ и удовлетворяет условию (см. пример 2):

$$U_x(0,t) - hU(0,t) = 0.$$

Кроме того, оно будет совпадать с решением задачи (A1) при $x \ge 0$, если начальная функция $\Phi(x)$ совпадает с заданной $\varphi(x)$ на положительной полупрямой, т.е.

$$\Phi(x) = \varphi(x)$$
 для $x \ge 0$. (A4)

Чтобы воспользоваться решением задачи (A2), следует установить вид функции $\Phi(x)$ на всей прямой. Продолжим начальные данные задачи (A1) на область отрицательных значений x следующим образом. Так как функция $\tilde{\Phi}(x)$ является нечетной, то для $\forall x \in R$ должно выполняться равенство:

$$\tilde{\Phi}(-x) = -\tilde{\Phi}(x) \quad \forall x \in R,$$

которое, учитывая определение (А3), принимает вид:

$$\Phi'(-x) - h\Phi(-x) = -\Phi'(x) + h\Phi(x) \quad \forall x \in R.$$

Тогда для x > 0 в силу равенства (A4) имеем

$$\Phi'(-x) - h\Phi(-x) = -\varphi'(x) + h\varphi(x) \quad \forall x > 0.$$

Таким образом, для определения функции $\Phi(x)$ при отрицательных значениях аргумента x построим задачу Коши:

$$\Phi'(x) - h\Phi(x) = -\varphi'(-x) + h\varphi(-x), \quad x < 0,$$

$$\Phi(0) = \varphi(0).$$

Ее решением будет функция

$$\Phi(x) = \int_0^x f(\xi)e^{h(x-\xi)} d\xi + \varphi(0)e^{hx}, \quad x < 0,$$
 (A5)

где $f(x) = -\varphi'(-x) + h\varphi(-x)$. Используя выражение для функции f(x) и правило интегрирования по частям, преобразуем интеграл:

$$\int_0^x f(\xi)e^{-h\xi} d\xi = -\int_0^x \varphi'(-\xi)e^{-h\xi} d\xi + h \int_0^x \varphi(-\xi)e^{-h\xi} d\xi =$$

$$= \varphi(-\xi)e^{-h\xi}\Big|_{0}^{x} + 2h \int_{0}^{x} \varphi(-\xi)e^{-h\xi} d\xi =$$

$$= \varphi(-x)e^{-hx} - \varphi(0) - 2h \int_{0}^{-x} \varphi(\xi)e^{h\xi} d\xi.$$

Тогда выражение (А5) приводится к виду:

$$\Phi(x) = \varphi(-x) - 2h \int_0^{-x} \varphi(\xi)e^{h(x+\xi)} d\xi, \quad x < 0.$$

Таким образом, получили явный вид функции $\Phi(x)$, определяемый заданной начальной функцией $\varphi(x)$:

$$\Phi(x) = \begin{cases}
\varphi(x), & x \ge 0, \\
\varphi(-x) - 2h \int_0^{-x} \varphi(\xi) e^{h(x+\xi)} d\xi, & x < 0.
\end{cases}$$
(A6)

По формуле Даламбера запишем решение задачи (А2):

$$U(x,t) = \frac{\Phi(x+at) + \Phi(x-at)}{2},$$

где $\Phi(x)$ задана формулой (A6). При $x \geq 0$ решения задач (A1) и (A2) совпадают:

$$u(x,t) = U(x,t), \quad x \ge 0.$$

Уточним вид функции u(x,t) в этой области. Будем считать, что a>0. Если x-at>0, то

$$\Phi(x + at) = \varphi(x + at), \quad \Phi(x - at) = \varphi(x - at)$$

И

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2}.$$

Если x - at < 0, то имеем:

$$\Phi(x+at) = \varphi(x+at),$$

$$\Phi(x - at) = \varphi(-x + at) - 2h \int_0^{-x+at} \varphi(\xi)e^{h(x-at+\xi)} d\xi.$$

Следовательно, при x - at < 0

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} - h \int_0^{-x+at} \varphi(\xi) e^{h(x-at+\xi)} d\xi.$$

Объединяя полученные результаты, искомое решение краевой задачи (A1) можно записать в виде:

$$u(x,t) = \begin{cases} \frac{1}{2}(\varphi(x+at) + \varphi(x-at)), & x \ge at > 0, \\ \frac{1}{2}(\varphi(x+at) + \varphi(at-x)) - \\ -h \int_0^{-x+at} \varphi(\xi) e^{h(x-at+\xi)} d\xi, & 0 < x < at. \ \ \end{cases}$$

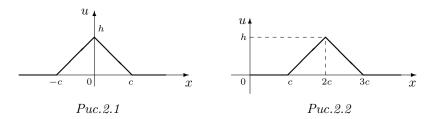
Упражнения

- **13.** Решить в области $-\infty < x < \infty, t > 0$ следующие задачи:
 - 1) $u_{tt} = u_{xx}$, $u(x,0) = x^2$, $u_t(x,0) = 4x$;
 - 2) $u_{tt} = u_{xx} + e^x$, $u(x,0) = \sin x$, $u_t(x,0) = x + \cos x$;
 - 3) $u_{tt} = u_{xx} + 5u_x + 3u_t + 4u,$ $u(x,0) = x \cdot e^{-\frac{5}{2} \cdot x - x^2}, \quad u_t(x,0) = e^{-\frac{5}{2} \cdot x};$
 - 4) $u_{tt} = u_{xx} + b \cdot x^2$, $u(x,0) = e^{-x}$, $u_t(x,0) = a$, a,b = const;
 - 5) $u_{tt} = u_{xx} + axt$, u(x,0) = x, $u_t(x,0) = \sin x$;
 - 6) $u_{tt} = u_{xx} + ae^{-t}$, $u(x,0) = b \cdot \sin x$, $u_t(x,0) = c \cdot \cos x$;
 - 7) $u_{tt} = u_{xx} + a \cdot \sin bt$, $u(x,0) = \cos x$, $u_t(x,0) = \sin x$;
 - 8) $u_{tt} = u_{xx} + x \cdot \sin t$, $u(x,0) = \sin x$, $u_t(x,0) = \cos x$.
- 14. Найдите решение уравнения

$$\frac{\partial}{\partial x} \left(\left(1 - \frac{x}{h} \right)^2 \cdot \frac{\partial u}{\partial x} \right) = \frac{1}{a^2} \cdot \left(1 - \frac{x}{h} \right)^2 \cdot \frac{\partial^2 u}{\partial t^2}$$

при заданных начальных условиях: $u(x,0) = f(x), u_t(x,0) = F(x).$

- **15.** Неограниченная струна возбуждена локальным начальным отклонением, изображенным на рис.2.1. Построить положение струны для моментов времени: $t_k = \frac{kc}{4a}$, k = 0, 1, 2, 3, 5.
- **16.** Неограниченной струне сообщена на отрезке $-c \le x \le c$ поперечная начальная скорость $v_o = const$; вне этого отрезка начальная скорость



равна 0. Найти формулы, представляющие закон движения точек струны с различными абсциссами при t>0, и построить положения струны для моментов времени: $t=\frac{kc}{4a}$, k=0,2,4,6.

17. Для решения u = u(x, t) задачи Коши:

$$u_{tt} = a^2 \cdot u_{xx}, \quad -\infty < x < \infty, t > 0,$$

$$u(x, 0) = \varphi(x), \quad u_t(x, 0) = \psi(x)$$

доказать, что

- а) если $\varphi(x)$ и $\psi(x)$ нечетные функции, то u(0,t)=0;
- б) если $\varphi(x)$ и $\psi(x)$ четные функции, то $u_x(0,t)=0;$
- в) если $\varphi(x)$ и $\psi(x)$ нечетные и 2l-периодические функции, то u(0,t)=u(l,t)=0.
- **18.** Для решения u = u(x,t) задачи Коши:

$$u_{tt} = a^2 \cdot u_{xx} + f(x,t), \quad -\infty < x < \infty, t > 0,$$

 $u(x,0) = u_t(x,0) = 0$

доказать, что

- а) если f(x,t) нечетная функция относительно x, то u(0,t)=0;
- б) если f(x,t) четная функция относительно x, то $u_x(0,t)=0$.
- **19.** Решите следующие задачи на полупрямой, подходящим образом продолжая данные на всю прямую $-\infty < x < \infty$:
 - 1) $u_{tt} = a^2 \cdot u_{xx}$, x > 0, t > 0, u(0,t) = 0, t > 0; $u(x,0) = f(x), u_t(x,0) = g(x), x > 0$.
 - 2) $u_{tt} = a^2 \cdot u_{xx}$, x > 0, t > 0, $u_x(0,t) = 0, t > 0$; $u(x,0) = f(x), u_t(x,0) = g(x), x > 0$.

- **20.** Полуограниченная струна, закрепленная на конце x=0, возбуждена начальным отклонением, изображенным на рис.2.2. Построить положения струны для моментов времени: $t \in \{\frac{c}{a}, \frac{3c}{2a}, \frac{2c}{a}, \frac{7c}{2a}\}$.
- **21.** Полуограниченная однородная струна $0 \le x < \infty$ с закрепленным концом x = 0 возбуждена начальным отклонением

$$u(x,0) = \begin{cases} 0, & 0 \le x < l, \\ -\sin\frac{\pi x}{l}, & l \le x \le 2l, \\ 0, & 2l < x < \infty. \end{cases}$$

Полагая, что начальные скорости отсутствуют, определите графически форму струны в моменты времени: $t \in \{\frac{l}{4a}, \frac{l}{a}, \frac{5l}{4a}, \frac{3l}{2a}, \frac{7l}{4a}, \frac{9l}{4a}\}.$

22. Найти решение волнового уравнения

$$u_{tt} = a^2(u_{xx} + u_{yy} + u_{zz}),$$

удовлетворяющее начальным условиям

$$u(r,0) = \phi(r), \quad u_t(r,0) = \psi(r), \quad r = \sqrt{x^2 + y^2 + z^2},$$

где $\phi(r)$ и $\psi(r)$ – функции, заданные для всех $r \geq 0$. (Случай центральной симметрии.)

Указание. Введите сферические координаты.

§3. Задача Штурма-Лиувилля. Свойства собственных функций

Рассмотрим на промежутке (0;l) для функции X=X(x) обыкновенное дифференциальное уравнение второго порядка с постоянным параметром c вида

$$\frac{d}{dx}\left[p(x)\frac{dX}{dx}\right] - q(x)X + c\rho(x)X = 0,$$
(3.1)

с заданными краевыми условиями

$$\alpha_1 X'(0) + \beta_1 X(0) = 0, (3.2)$$

$$\alpha_2 X'(l) + \beta_2 X(l) = 0,$$

 $\alpha_i^2 + \beta_i^2 \neq 0, i = 1, 2.$
(3.3)

Здесь $\rho(x), p(x), q(x)$ – достаточно гладкие вещественные функции, причем $p(x)>0, \rho(x)>0, q(x)\geq 0.$

Задача Штурма-Лиувилля для уравнения (3.1) формулируется следующим образом: найти множесство значений параметра c, при которых уравнение (3.1) имеет ненулевое решение, удовлетворяющее однородным условиям (3.2),(3.3).

Найденные значения параметра $c=c_k$ называются собственными значениями задачи Штурма-Лиувилля, а соответствующие им решения $X_k(x)$ задачи (3.1)-(3.3) – собственными функциями.

Свойства решений задачи Штурма-Лиувилля

- 1. Задача Штурма-Лиувилля (3.1)-(3.3) имеет счетное множество собственных значений c_1, c_2, \ldots и все они вещественны.
- 2. Каждому собственному значению c_k соответствует единственная (с точностью до постоянного множителя) собственная функция $X_k(x)$.
- 3. Если функция $\tilde{X} = X_1 + iX_2$ (i —мнимая единица) является собственной, соответствующей собственному значению \tilde{c} , то ее вещественная и мнимая части также являются собственными функциями, соответствующими тому же значению \tilde{c} . Собственные функции задачи можно выбрать вещественными.
- 4. Собственные функции на отрезке [0;l] образуют ортогональную систему с весом $\rho(x)$:

$$\int_0^l \rho(x) X_n(x) X_m(x) \, dx = \left\{ \begin{array}{ll} 0, & m \neq n, \\ ||X_n||^2, & m = n. \end{array} \right.$$

- 5. Система собственных функций задачи Штурма-Лиувилля полна в пространстве $L_2(0,l)$.
- 6. (**Теорема Стеклова**.) Всякая функция f(x), удовлетворяющая краевым условиям (3.2)-(3.3) и имеющая непрерывную первую производную и кусочно-непрерывную вторую производную, разлагается в абсолютно и равномерно сходящийся ряд по собственным функциям $X_n(x)$:

$$f(x) = \sum_{n=1}^{\infty} f_n X_n(x), \quad f_n = \int_0^l \rho(x) X_n(x) f(x) dx.$$

В случае когда $p(x)\equiv 1, \rho(x)\equiv 1, q(x)\equiv 0,$ задача Штурма-Лиувилля принимает вид:

$$X'' + c \cdot X(x) = 0, \tag{3.4}$$

$$\alpha_1 X'(0) + \beta_1 X(0) = 0, (3.5)$$

$$\alpha_2 X'(l) + \beta_2 X(l) = 0,$$
 (3.6)

$$\alpha_i^2 + \beta_i^2 \neq 0, i = 1, 2.$$

Пусть $\Phi = \{\phi_n(x)\}_{n=0}^{\infty}$ — полная ортогональная на [a;b] система функций, а функция $f(x) \in L_2(a,b)$. Ряд

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x),$$

где

$$f_n = \frac{1}{\int_a^b \phi_n^2(x) dx} \int_a^b f(x)\phi_n(x) dx, \quad n = 0, 1, 2, \dots,$$

называется ортогональным разложением или рядом Фурье функции f(x) по системе Φ . Числа f_n называются коэффициентами Фурье функции f(x) по системе Φ . Интеграл

$$||\phi_n(x)||^2 = \int_a^b \phi_n^2(x) \, dx$$

определяет квадрат нормы функции $\phi_n(x)$.

Пример 1. Найти собственные значения c_k и собственные функции $X_k(x)$ следующей задачи Штурма-Лиувилля:

$$X''(x) + cX(x) = 0, \quad 0 < x < l, \tag{A1}_1$$

$$X'(0) - hX(0) = 0, \quad X(l) = 0, \quad h = const > 0.$$
 (A1₂)

Решение. Прежде всего докажем, что все собственные числа задачи (A1) являются положительными. Действительно, умножив скалярно правую и левую часть уравнения $(A1_1)$ на функцию X(x), получим:

$$\int_0^l X''(x)X(x) \, dx + c \int_0^l X^2(x) \, dx = 0.$$

Откуда, применив к первому слагаемому полученного выражения правило интегрирования по частям и условия задачи $(A1_2)$ при x=0 и x=l, найдем

$$c = \frac{hX^2(0) + ||X'||^2}{||X||^2}. (A2)$$

Отсюда, очевидно, следует неотрицательность значения c. Формула (A2) выражает собственное значение через соответствующую ему собственную функцию.

Покажем, что $c \neq 0$. Предположим противное. Пусть среди собственных чисел есть нулевое и ему соответствует ненулевая вещественная собственная функция X(x). Тогда из равенства (A2) при c=0 следует

$$X(0) = 0$$
 и $||X'||^2 = 0$.

Откуда, учитывая свойства нормы функции, можно сделать вывод, что $X(x)\equiv 0$. А значит, ненулевой функции, соответствующей нулевому собственному значению, нет. Можно показать, что собственной функции вида $X=X_1+iX_2$ с ненулевыми вещественной или мнимой частями, соответствующей собственному значению c=0, также нет (покажите это самостоятельно).

Таким образом, все собственные значения задачи Штурма-Лиувилля (A1) положительны.

Теперь приступим к построению решения задачи. Ради удобства обозначим $c = \lambda^2$. Общее решение уравнения $(A1_1)$ имеет вид:

$$X(x) = A\sin \lambda x + B\cos \lambda x. \tag{A3}$$

Подберем произвольные постоянные A и B и параметр λ так, чтобы удовлетворялись граничные условия $(A1_2)$. Подстановка выражения (A3) в условия $(A1_2)$ дает систему линейных уравнений с параметром λ относительно A и B:

$$\begin{cases} X'(0) - hX(0) = \lambda A - hB = 0, \\ X(l) = A\sin\lambda l + B\cos\lambda l = 0, \end{cases}$$
(A4)

которая имеет ненулевое решение, если ее определитель равен нулю:

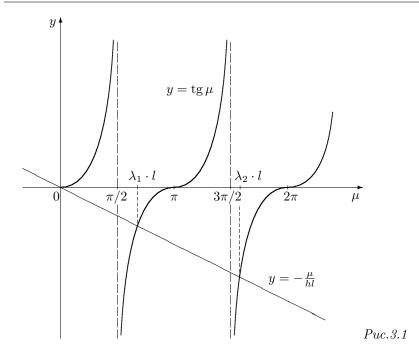
$$\left| \begin{array}{cc} \lambda & -h \\ \sin \lambda l & \cos \lambda l \end{array} \right| = 0.$$

Отсюда получаем уравнение для определения собственных чисел $c=\lambda^2$:

$$\lambda \cos \lambda l + h \sin \lambda l = 0$$
 или $\operatorname{tg} \lambda l = -\frac{\lambda}{h}$ (A5₁)

или, полагая $\lambda l = \mu$, будем иметь:

$$tg \mu = -\frac{\mu}{hl}. (A5_2)$$



Уравнение (A5) имеет счетное множество положительных корней $\{\lambda_k\}_{k=1,2,...}$ (рис.3.1) (отрицательные корни можно не рассматривать, так как они новых положительных собственных значений не дают).

Таким образом, собственные числа задачи (A1) равны: $c_k = \lambda_k^2$, где λ_k – положительные корни уравнения (A5₁). Соответствующие им собственные функции $X_k(x)$, учитывая первое равенство в системе (A4), запишем в виде:

$$X_k(x) = B_k \cos \lambda_k x + \frac{hB_k}{\lambda_k} \sin \lambda_k x, \quad k = 1, 2, \dots$$

Выбирая $B_k = \lambda_k$, получим окончательное выражение для собственных функций задачи (A1):

$$X_k(x) = \lambda_k \cos \lambda_k x + h \sin \lambda_k x, \quad k = 1, 2, \dots$$
 (A6)

Найдем квадрат нормы функций $X_k(x), k = 1, 2, \ldots,$ вычислив инте-

грал:

$$||X_{k}||^{2} = \int_{0}^{l} X_{k}^{2}(x) dx = \int_{0}^{l} (\lambda_{k} \cos \lambda_{k} x + h \sin \lambda_{k} x)^{2} dx =$$

$$= \int_{0}^{l} \left(\frac{1}{2} (\lambda_{k}^{2} + h^{2}) + \frac{1}{2} (\lambda_{k}^{2} - h^{2}) \cos 2\lambda_{k} x + \lambda_{k} h \sin 2\lambda_{k} x \right) dx =$$

$$= \frac{l}{2} (\lambda_{k}^{2} + h^{2}) + \frac{1}{4\lambda_{k}} (\lambda_{k}^{2} - h^{2}) \sin 2\lambda_{k} l - \frac{h}{2} (\cos 2\lambda_{k} l - 1).$$
(A7)

Так как

$$\sin 2\lambda_k l = \frac{2 \operatorname{tg} \lambda_k l}{1 + \operatorname{tg}^2 \lambda_k l} \quad \text{if} \quad \cos 2\lambda_k l = \frac{1 - \operatorname{tg}^2 \lambda_k l}{1 + \operatorname{tg}^2 \lambda_k l}$$

и для $\lambda = \lambda_k$ справедливо равенство (A5) при любом $k = 1, 2, \ldots$, то путем несложных преобразований выражения (A7) получим следующее выражение для квадрата нормы:

$$||X_k||^2 = \frac{1}{2}(h + l(\lambda_k^2 + h^2)), \quad k = 1, 2, \dots$$

• Можно получить общую формулу, выражающую собственные значения задачи Штурма-Лиувилля (3.4)-(3.6) через соответствующие им собственные функции, в виде:

$$c = \frac{X'(0)X(0) - X'(l)X(l) + \|X'\|^2}{\|X\|^2},$$

где связь между величинами X(0), X'(0), X(l) и X'(l) описывают условия (3.5), (3.6).

Простейшие задачи Штурма-Лиувилля для уравнения X'' + cX = 0

Вид условия	Собственные значения и функции
X(0) = X(l) = 0	$c_k = \left(\frac{k\pi}{l}\right)^2, X_k(x) = \sin\frac{k\pi x}{l},$ $\ X_k\ ^2 = l/2, k = 1, 2, \dots$
X'(0) = X(l) = 0	$c_k = \left(\frac{(2k+1)\pi}{2l}\right)^2, X_k(x) = \cos\frac{(2k+1)\pi x}{2l},$ $\ X_k\ ^2 = l/2, k = 0, 1, 2, \dots$
X(0) = X'(l) = 0	$c_k = \left(\frac{(2k+1)\pi}{2l}\right)^2, X_k(x) = \sin\frac{(2k+1)\pi x}{2l},$ $\ X_k\ ^2 = l/2, k = 0, 1, 2, \dots$
X'(0) = X'(l) = 0	$c_k = \left(\frac{k\pi}{l}\right)^2, X_k(x) = \cos\frac{k\pi x}{l}, k = 0, 1, 2, \dots,$ $\ X_0\ ^2 = l, \ \ X_k\ ^2 = l/2, k = 1, 2, \dots$

Упражнения

- **23.** Для уравнения (3.4) решите задачу Штурма-Лиувилля при следующих условиях:
 - a) X(0) = X(l) = 0;
 - 6) X'(0) = X(l) = 0;
 - B) X(0) = X'(l) = 0;
 - Γ) X'(0) = X'(l) = 0;
 - д) $X(0) = X'(l) + h \cdot X(l) = 0, h > 0;$
 - e) $X'(0) h \cdot X(0) = X'(l) = 0, h > 0;$
 - ж) $X'(0) h \cdot X(0) = X'(l) + h \cdot X(l) = 0, h > 0.$
- **24.** Доказать, что собственные функции $X_k(x)$ и $X_m(x)$ задачи (3.4)- (3.6), соответствующие различным собственным числам c_k и c_m

 $(k \neq m)$, ортогональны, т.е.

$$(X_k, X_m) = \int_0^l X_k(x) \cdot X_m(x) \, dx = 0.$$

- **25.** Разложите по системе функций $\{\sin\frac{k\pi x}{l}\}, k=1,2,\ldots,$ следующие функции:
 - a) f(x) = 1; B) $f(x) = x \cdot (l x);$
 - 6) f(x) = x; Γ $f(x) = \sin \frac{8\pi x}{l}$.
- **26.** Разложите по системе функций $\{\cos \frac{k\pi x}{l}\}, k=0,1,2,\ldots,$ функцию:

$$f(x) = x \cdot (x-1) + \cos^2 x + 2 + 5 \cdot \cos \frac{7\pi x}{I}.$$

§4. Метод разделения переменных (Метод Фурье)

Обозначим через P_t – дифференциальный оператор порядка m вида

$$P_t \equiv \sum_{i=0}^{m} a_i(t) \frac{d^i}{dt^i},\tag{4.1}$$

где $a_i(t), i = \overline{0, m}$, – заданные непрерывные функции $(a_i \in C(R^+))$. Для случая, когда $m \ge 1$, рассмотрим смешанную задачу: найти решение u(x,t) уравнения

$$\rho(x)P_t[u] = \frac{\partial}{\partial x} \left[p(x)\frac{\partial u}{\partial x} \right] - q(x)u, \quad 0 < x < l, \quad t > 0,$$
 (4.2)

удовлетворяющее однородным граничным условиям

$$\alpha_1 \frac{\partial u}{\partial x} + \beta_1 u(x, t) \Big|_{x=0} = 0,$$

$$\alpha_2 \frac{\partial u}{\partial x} + \beta_2 u(x, t) \Big|_{x=l} = 0$$
(4.3)

и начальным условиям

$$\frac{\partial^{i} u(x,0)}{\partial t^{i}} = \varphi_{i}(x), \quad i = \overline{0, m-1}. \tag{4.4}$$

Будем считать, что функции $\rho(x), p(x), q(x)$, входящие в уравнение (4.2), заданы на промежутке (0,l) и обладают следующими свойствами:

- 1) $\rho(x) > 0, p(x) > 0$ для $\forall x \in (0, l)$;
- 2) функции $\rho(x), q(x)$ непрерывны на промежутке $(0, l) \quad (\rho, q \in C(0, l));$
- 3) функция p(x) непрерывно дифференцируема на промежутке (0,l) $(p\in C^1(0,l)).$

При указанных ограничениях, накладываемых на функции ρ, p, q , и m=2 однозначно устанавливается тип уравнения (4.2) в зависимости от знака функции $a_2(t)$ при $\forall t>0$:

если $a_2(t) > 0$, то уравнение имеет гиперболический тип;

если $a_2(t) = 0$, то уравнение имеет параболический тип;

если $a_2(t) < 0$, то уравнение имеет эллиптический тип.

Решение задачи (4.2)-(4.4) может быть построено с помощью метода разделения переменных (метода Фурье). Кратко изложим схему метода.

Ненулевое решение будем искать в виде произведения двух функций X(x) и T(t) :

$$u(x,t) = X(x)T(t). \tag{*}$$

Подставляя выражение (*) в уравнение (4.2) и разделяя переменные, получим:

$$\frac{\frac{d}{dx}\left[p(x)\frac{dX(x)}{dx}\right] - q(x)}{\rho(x)X(x)} = \frac{P_t[T(t)]}{T(t)}.$$
 (**)

Так как правая часть не зависит от x, а левая часть не зависит от t, то для любых x и t равенство возможно, если оба отношения равны константе, скажем, -c. Тогда равенство (**) распадается на два уравнения

$$\frac{d}{dx}\left[p(x)\frac{dX}{dx}\right] - q(x)X + c\rho(x)X = 0,$$
(4.5)

$$P_t[T(t)] + cT(t) = 0,$$
 (4.6)

где c — пока неизвестная константа.

Подставляя выражение (*) в граничные условия (4.3) и учитывая, что $T(t) \not\equiv 0$, получаем однородные условия для функции X(x) :

$$\alpha_1 X'(0) + \beta_1 X(0) = 0, \quad \alpha_2 X'(l) + \beta_2 X(l) = 0.$$
 (4.7)

Таким образом, для смешанной задачи построена соответствующая задача Штурма-Лиувилля (4.5), (4.7), решая которую получаем набор собственных значений c_k и собственных функций $X_k(x)$.

Далее для каждого значения c_k находится общее решение уравнения (4.6) – функция $T_k(t)$:

$$T_k(t) = \sum_{j=1}^{m} A_j \tilde{T}_{kj}(t),$$
 (4.8)

где $\{\tilde{T}_{kj}(t)\}_{j=1}^m$ – фундаментальная система решений уравнения (4.6) (при $c=c_k$). И затем строится общее решение уравнения (4.2), удовлетворяющее граничным условиям (4.3), в виде ряда по собственным функциям:

$$u(x,t) = \sum_{k} T_k(t) X_k(x) = \sum_{k} \sum_{j=1}^{m} A_j \tilde{T}_{kj}(t) X_k(x).$$
 (4.9)

Входящие в него произвольные постоянные A_j определяются подстановкой общего решения в начальные условия (4.4) (подчинением начальным условиям):

$$\left. \frac{\partial^i u}{\partial t^i} \right|_{t=0} = u(x,0) = \sum_k T_k^{(i)}(0) X_k(x) = \varphi_i(x), \quad i = \overline{0, m-1}.$$

При этом заданные функции $\varphi_i(t)$ требуется разложить в ряд по системе собственных функций

$$\varphi_i(x) = \sum_k \alpha_{ki} X_k(x).$$

Откуда получаем уравнения для определения величин A_j :

$$T_k^{(i)}(0) = \sum_{j=1}^m A_j \tilde{T}_{kj}^{(i)}(0) = \alpha_{ki}, \quad i = \overline{0, m-1}.$$

При соблюдении условий, налагаемых на функции φ_i , обеспечивающих равномерную сходимость ряда

$$\sum_{k} T_k(t) X_k(x)$$

и рядов, полученных из него почленным дифференцированием достаточное число раз, получаем классическое решение задачи (4.2)-(4.4).

Пример 1. В полуполосе $D = \{(x,y): 0 < x < l, t > 0\}$ найти решение уравнения $U_{tt} = a^2 U_{xx}$, удовлетворяющее однородным граничным

условиям:

$$U(0,t) = U(l,t) = 0$$

и начальным условиям:

$$U(x,0) = 0$$
, $U_t(x,0) = \sin \frac{2\pi}{l} x$.

Решение. \triangleright Будем искать решение в виде U(x,t) = T(t)X(x). Так как

$$U_{tt} = T''(t)X(x)$$
 и $U_{xx} = T(t)X''(x)$,

то, подставив выражения для производных U_{tt}, U_{xx} в заданное уравнение и разделив переменные, получим

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)}.$$

Равенство должно выполняться при любых x и t из рассматриваемой области, что возможно, если оба отношения равны некоторой константе, то есть

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -c, \ c = const, \tag{A1}$$

откуда получаем два дифференциальных уравнения c параметром c:

$$X'' + cX = 0$$
 и $T'' + ca^2T = 0$.

Первое уравнение, учитывая однородные граничные условия U(0,t)=U(l,t)=0, дает для функции X(x) задачу Штурма-Лиувилля:

$$X''(x) + cX(x) = 0, \quad 0 < x < l,$$

 $X(0) = X(l) = 0,$

решением которой будут собственные числа $c_k=(\frac{k\pi}{l})^2$ и соответствующие им собственные функции $X_k(x)=\sin\frac{k\pi}{l}x,\;k=1,2,\ldots$

Остается для каждого значения $c=c_k$ найти решение второго уравнения для функции T(t):

$$T''(t) + a^2 c_k T(t) = 0,$$

общее решение которого при различных k имеет вид:

$$T_k(t) = A_k \cos \frac{a\pi k}{l} t + B_k \sin \frac{a\pi k}{l} t.$$

Тогда, согласно методу Фурье, решение заданного уравнения запишем в виде ряда:

$$U(x,t) = \sum_{k=1}^{\infty} \left(A_k \cos \frac{a\pi k}{l} t + B_k \sin \frac{a\pi k}{l} t \right) \cdot \sin \frac{k\pi}{l} x, \tag{A3}$$

предполагая, что он допускает двукратное почленное дифференцирование. Чтобы найти неизвестные константы A_k, B_k , подчиним функцию U(x,t) в виде (A3) начальным условиям:

$$U(x,0) = \sum_{k=1}^{\infty} A_k \sin \frac{k\pi}{l} x = 0,$$

$$U_t(x,0) = \sum_{k=1}^{\infty} B_k \frac{a\pi k}{l} \sin \frac{k\pi}{l} x = \sin \frac{2\pi}{l} x.$$

Из первого соотношения следует, что $A_k=0$, $\forall k=1,2,\ldots$ Для того чтобы найти коэффициенты B_k , необходимо разложить функцию в правой части второго равенства в ряд по собственным функциям $\left\{\sin\frac{k\pi}{l}x\right\}|_{k=1}^{\infty}$ и приравнять коэффициенты при одинаковых собственных функциях в разложениях справа и слева. Но так как функция $\sin\frac{2\pi}{l}x$ сама является собственной, то имеем:

$$B_k = 0$$
 для $k \neq 2$, $B_2 \cdot \frac{2a\pi}{l} = 1$.

Следовательно, так как среди коэффициентов A_k и B_k только один ненулевой: $B_2 = \frac{l}{2a\pi}$, то искомое решение будет содержать только одно слагаемое ряда (A3) при k=2.

Otbet: $U(x,t) = \frac{l}{2a\pi} \sin \frac{2a\pi}{l} t \cdot \sin \frac{2\pi}{l} x$.

Пример 2. В полуполосе $D = \{(x,y) : 0 < x < l, \ t > 0\}$ найти решение смешанной задачи:

$$u_t = a^2 u_{xx} - \beta u, (A1)$$

$$u_x(0,t) - hu(0,t) = u_x(l,t) = 0, \quad h > 0,$$
 (A2)

$$u(x,0) = u_0, (A3)$$

$$\beta, h, u_0 - \text{const.}$$

Решение. □ Применяя метод разделения переменных, будем искать ненулевое решение в виде

$$u(x,t) = X(x) \cdot T(t), \quad X(x) \not\equiv 0, \ T(t) \not\equiv 0. \tag{A4}$$

Подставим выражение (А4) в уравнение (А1):

$$X \cdot T' = a^2 X'' \cdot T - \beta X \cdot T.$$

Разделив переменные, получим равенство двух отношений, одно из которых зависит только от t, а другое – от x. Такое равенство возможно, если отношения являются постоянными величинами:

$$\frac{T' + \beta T}{a^2 T} = \frac{X''}{X} = -c = \text{const.}$$

Отсюда получаем два уравнения:

$$T' + (\beta + a^2c)T = 0, (A5)$$

$$X'' + cX = 0. (A6)$$

Потребуем, чтобы решение вида (A4) удовлетворяло граничным условиям (A2):

$$u_x(0,t) - hu(0,t) = (X'(0) - hX(0))T(t) = 0,$$

 $u_x(l,t) = X'(l)T(t) = 0.$

Так как условия должны выполняться для любых $t \ge 0$ и $T(t) \not\equiv 0$, то будем иметь

$$X'(0) - hX(0) = 0$$
 и $X'(l) = 0$.

Таким образом, для заданной смешанной задачи получили соответствующую задачу Штурма-Лиувилля:

$$X'' + cX = 0, \quad 0 < x < l,$$

 $X'(0) - hX(0) = X'(l) = 0.$ (A7)

Из общей теории известно, что собственные значения задачи (A7) положительны, c>0. Тогда общее решение уравнения задачи (A7) имеет вид:

$$X(x) = A\cos\lambda x + B\sin\lambda x,\tag{A8}$$

где $\lambda = \sqrt{c} > 0$. Подчиняя выражение (A8) заданным условиям задачи (A7), получим

$$\begin{cases} \lambda B - hA = 0, \\ -A\lambda \sin \lambda l + B\lambda \cos \lambda l = 0 \end{cases} \Leftrightarrow \begin{cases} B = \frac{h}{\lambda}A, \\ A\sin \lambda l - B\cos \lambda l = 0. \end{cases}$$
 (A9)

Полученная система будет иметь ненулевое решение, если определитель матрицы системы равен нулю, т.е. если будет выполнено равенство

$$\sin \lambda l - \frac{h}{\lambda} \cos \lambda l = 0 \iff \operatorname{tg} \lambda l = \frac{h}{\lambda}.$$
 (A10)

Уравнение (A10) имеет счетное множество решений. Рассматривая только положительные корни уравнения (A10) (объясните, почему?), получим собственные числа задачи (A7):

$$c_k = \lambda_k^2$$
, где $\operatorname{tg} \lambda_k l = \frac{h}{\lambda_k}$, $k = 1, 2, \dots$

и соответствующие им собственные функции вида (А8):

$$X_k(x) = A_k(\cos \lambda_k x + \frac{h}{\lambda_k} \sin \lambda_k x). \tag{A8'}$$

Так как $\frac{h}{\lambda_k}=\operatorname{tg}\lambda_k l$, то, полагая $A_k=\cos\lambda_k l$, получим

$$X_k(x) = \cos \lambda_k l \cos \lambda_k x + \sin \lambda_k l \sin \lambda_k x = \cos \lambda_k (x - l). \tag{A11}$$

Для каждого $k = 1, 2, \dots$ построим общее решение уравнения (A5):

$$T_k(t) = D_k e^{-(\beta + a^2 \lambda_k^2)t}.$$

Тогда частное решение уравнения (A1), удовлетворяющее граничным условиям (A2), запишется в виде:

$$u_k(x,t) = X_k(x)T_k(t) = D_k e^{-(\beta + a^2 \lambda_k^2)t} \cos \lambda_k(x-l).$$

Используя принцип суперпозиции, построим решение уравнения (А1):

$$u(x,t) = \sum_{k=1}^{\infty} u_k(x,t) = \sum_{k=1}^{\infty} D_k e^{-(\beta + a^2 \lambda_k^2)t} \cos \lambda_k(x-l).$$
 (A12)

Осталось подчинить выражение (A12) начальному условию (A3):

$$u(x,0) = \sum_{k=1}^{\infty} D_k \cos \lambda_k (x-l) = \sum_{k=1}^{\infty} D_k X_k(x) = u_0.$$

Собственные функции $X_k(x)$ (A11) задачи Штурма-Лиувилля (A7) ортогональны на отрезке [0;l] с весом $\rho(x)\equiv 1$, поэтому имеем:

$$\int_0^l u_0 X_k(x) \, dx = D_k \int_0^l X_k^2(x) \, dx \implies D_k = \frac{u_0 \int_0^l X_k(x) \, dx}{\int_0^l X_k^2(x) \, dx}, \quad (A13)$$

$$k = 1, 2, \dots$$

 D_k – коэффициенты разложения функции $f(x) = u_0$ в ряд по системе $\{X_k(x)\}|_{k=1}^{\infty}$. Вычислим интегралы, входящие в выражение для коэффициента D_k . Рассмотрим интеграл в числителе:

$$\int_0^l X_k(x) \, dx = \int_0^l \cos \lambda_k(x - l) \, dx = \frac{1}{\lambda_k} \sin \lambda_k l.$$

Интеграл в знаменателе выражения (A13) определяет квадрат нормы собственной функции (A11):

$$\int_0^l X_k^2(x) \, dx = \int_0^l \cos^2 \lambda_k(x - l) \, dx = \frac{l}{2} + \frac{1}{4\lambda_k} \sin 2\lambda_k l.$$

Преобразуем последнее выражение, учитывая равенства:

получим

$$||X_k||^2 = \int_0^l X_k^2(x) dx = \frac{l(\lambda_k^2 + h^2) + h}{2(\lambda_k^2 + h^2)}.$$

Таким образом, коэффициенты D_k ряда (A12) равны

$$D_k = u_0 \frac{2(\lambda_k^2 + h^2)}{l(\lambda_k^2 + h^2) + h} \cdot \frac{\sin \lambda_k l}{\lambda_k}.$$

И, следовательно, решение задачи (А1)-(А3) имеет вид:

$$u(x,t) = 2u_0 \sum_{k=1}^{\infty} \frac{2(\lambda_k^2 + h^2) \sin \lambda_k l}{\lambda_k [l(\lambda_k^2 + h^2) + h]} e^{-(\beta + a^2 \lambda_k^2)t} \cos \lambda_k (x - l), \qquad (A14)$$

где λ_k – положительные корни уравнения $\operatorname{tg} \lambda l = \frac{h}{\lambda}.$

3амечание. Если выбрать собственные функции $X_k(x)$ задачи (A7) следующим образом:

$$X_k(x) = \lambda_k \cos \lambda_k x + h \sin \lambda_k x,$$

полагая в (A8') $A_k = \lambda_k$, то можно построить решение задачи (A1)-(A3) в виде:

$$u(x,t) = 2u_0 h \sum_{k=1}^{\infty} \frac{1}{\lambda_k [l(\lambda_k^2 + h^2) + h]} e^{-(\beta + a^2 \lambda_k^2)t} (\lambda_k \cos \lambda_k x + h \sin \lambda_k x).$$
(A15)

Путем несложных преобразований выражение (A15) можно привести к виду (A14) (выполните это самостоятельно). \triangleleft

• Решение неоднородных задач также может быть найдено с помощью метода Фурье. При этом решение неоднородного уравнения, удовлетворяющего однородным граничным условиям, находится в виде ряда по собственным функциям соответствующей задачи Штурма-Лиувилля. Смешанную задачу с неоднородными граничными условиями предварительно следует редуцировать (свести) к задаче с однородными граничными условиями.

Пример 3. В полуполосе $D = \{(x,t) : 0 < x < l, t > 0\}$ найти решение краевой задачи:

$$U_{tt} = U_{xx} + 2b, \quad b = \text{const},$$
 (A1)
 $U(0,t) = U(l,t) = 0, \quad U(x,0) = U_t(x,0) = 0.$

Решение. Построив с помощью соответствующего заданному однородного уравнения $U_{tt}=U_{xx}$ и однородных граничных условий U(0,t)=U(l,t)=0 задачу Штурма-Лиувилля:

$$X''(x) + cX(x) = 0$$
, $0 < x < l$, $X(0) = X(l) = 0$,

найдем собственные функции и собственные числа краевой задачи:

$$X_k(x) = \sin \frac{k\pi}{l} x, \quad c_k = \left(\frac{k\pi}{l}\right)^2, \quad k \in \mathbb{N}.$$

Общее решение уравнения (A1) будем искать в виде ряда по собственным функциям задачи с переменными коэффициентами $T_k(t)$:

$$U(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x) = \sum_{k=1}^{\infty} T_k(t) \sin \frac{k\pi}{l} x.$$
 (A2)

Входящую в уравнение функцию f(x,t) = 2b разложим в ряд по собственным функциям $X_k(x)$:

$$2b = \sum_{k=1}^{\infty} f_k \sin \frac{k\pi}{l} x,$$
 (A3)

где

$$f_k = \frac{2}{l} \int_0^l 2b \cdot \sin \frac{k\pi}{l} x \, dx = \frac{4b}{l} \cdot \frac{l}{k\pi} \cdot \left(-\cos \frac{k\pi}{l} x \right) \Big|_0^l =$$
$$= -\frac{4b}{k\pi} [(-1)^k - 1] = \begin{cases} 0, & k - \text{четное} \\ \frac{8b}{k\pi}, & k - \text{нечетное.} \end{cases}$$

Подставляя разложения (A2) и (A3) в заданное уравнение (A1), будем иметь

$$\sum_{k=1}^{\infty} T_k''(t) \cdot \sin \frac{k\pi}{l} x = -\sum_{k=1}^{\infty} T_k(t) \cdot \left(\frac{k\pi}{l}\right)^2 \sin \frac{k\pi}{l} x + \sum_{k=1}^{\infty} f_k \cdot \sin \frac{k\pi}{l} x,$$

$$\sum_{k=1}^{\infty} \left[T_k''(t) + \left(\frac{k\pi}{l}\right)^2 T_k(t) - f_k \right] \cdot \sin \frac{k\pi}{l} x = 0.$$

Из последнего равенства получаем уравнения для функций $T_k(t)$:

$$T_k''(t) + \left(\frac{k\pi}{l}\right)^2 T_k(t) = f_k, \quad k \in \mathbb{N}. \tag{A4}$$

Подставляя разложение (A2) в заданные начальные условия $U(x,0) = U_t(x,0) = 0$, получим:

$$T_k(0) = T'_k(0) = 0, \quad \forall k \in N.$$
 (A5)

Таким образом, для каждого $k \in N$ функция $T_k(t)$ является решением задачи Коши для уравнения (A4) с условиями (A5), которое имеет вид

$$T_k(t) = f_k \left(\frac{l}{k\pi}\right)^2 \left(1 - \cos\frac{k\pi}{l}t\right).$$

Подставляя найденные выражения для функций T_k в ряд (A2) для функции U(x,t), получим искомое решение

$$U(x,t) = \sum_{k=1}^{\infty} f_k \left(\frac{l}{k\pi}\right)^2 \cdot \left[1 - \cos\frac{k\pi}{l}t\right] \cdot \sin\frac{k\pi}{l}x,$$

которое с учетом значений коэффициентов f_k можно записать в виде

$$U(x,t) = \sum_{k=1}^{\infty} \frac{8bl^2}{(2k-1)^3\pi^3} \cdot \left[1 - \cos\frac{(2k-1)\pi}{l}t\right] \cdot \sin\frac{(2k-1)\pi}{l}x. \ \triangleleft$$

Пример 4. В полуполосе $D = \{(x,t): 0 < x < \pi, t > 0\}$ найти решение краевой задачи:

$$U_t = 4U_{xx} + x(3e^t + 1), (A1)$$

$$U(0,t) = 0, \quad U_x(\pi,t) = t+2,$$
 (A2)

$$U(x,0) = 2x + 3\sin\frac{3x}{2}. (A3)$$

Решение. Приведем исходную задачу (A1)-(A3) к задаче с однородными граничными условиями. Для этого будем искать ее решение в виде суммы двух функций

$$U(x,t) = V(x,t) + W(x,t), \tag{A4}$$

подобрав функцию W(x,t) таким образом, чтобы она удовлетворяла условиям:

$$W(0,t) = 0, \quad W_x(\pi,t) = t+2, \quad \forall t > 0.$$
 (A5)

Функцию, удовлетворяющую указанным условиям, можно искать в виде линейной комбинации граничных условий:

$$W(x,t) = (\gamma x + \delta)(t+2). \tag{A6}$$

Неизвестные константы γ и δ найдем, подчинив выражение (A6) условиям (A5):

$$\begin{cases} W(0,t) = \delta(t+2) = 0, \\ W_x(\pi,t) = \gamma(t+2) = t+2. \end{cases}$$

Откуда заключаем, что $\delta=0$ и $\gamma=1,$ и, следовательно, функцию W(x,t), удовлетворяющую условиям (A5), можно выбрать в виде:

$$W(x,t) = x(t+2).$$

Теперь с учетом выбранной функции W(x,t) решение исходной задачи будем искать в виде

$$U(x,t) = V(x,t) + x(t+2). (A7)$$

Подставляя это выражение в уравнение (A1) и условия (A2), (A3), получим задачу относительно функции V(x,t) с однородными граничными условиями:

$$V_t = 4V_{xx} + 3xe^t, \quad 0 < x < \pi, \ t > 0, \tag{A8}$$

$$V(0,t) = 0, \quad V_x(\pi,t) = 0, \quad t \ge 0,$$
 (A9)

$$V(x,0) = 3\sin\frac{3x}{2}, \quad 0 \le x \le \pi.$$
 (A10)

Решение краевой задачи (A8)-(A10) будем искать в виде ряда по собственным функциям соответствующей задачи Штурма-Лиувилля:

$$X''(x) + cX(x) = 0$$
, $0 < x < \pi$, $X(0) = X'(\pi) = 0$,

которая определяет следующий набор собственных функций:

$$X_k(x) = \sin \frac{2k+1}{2}x, \quad k = 0, 1, \dots$$

Тогда выражение для функции V(x,t) запишем в виде:

$$V(x,t) = \sum_{k=0}^{\infty} T_k(t) X_k(x) = \sum_{k=0}^{\infty} T_k(t) \sin \frac{2k+1}{2} x.$$
 (A11)

Разложим в ряд по системе функций $\{X_k(x)\}_{k=0}^{\infty}$ неоднородное слагаемое в уравнении (A8):

$$3xe^{t} = \sum_{k=0}^{\infty} f_{k}(t) \sin \frac{2k+1}{2} x,$$
 (A12)

где

$$f_k(t) = \frac{2}{\pi} \int_0^{\pi} 3x e^t \sin \frac{2k+1}{2} x \, dx = (-1)^k \frac{24e^t}{\pi (2k+1)^2}.$$

Подстановка разложений (А11) и (А12) в уравнение (А8) дает

$$\sum_{k=0}^{\infty} \left[T'_k + (2k+1)^2 T_k - (-1)^k \frac{24e^t}{\pi (2k+1)^2} \right] \sin \frac{2k+1}{2} x = 0.$$

Откуда для нахождения функций $T_k(t)$ получаем уравнения

$$T'_k + (2k+1)^2 T_k = \gamma_k e^t, \quad k = 0, 1, \dots,$$

где

$$\gamma_k = (-1)^k \frac{24}{\pi (2k+1)^2}.$$

К ним добавим условия

$$T_k(0) = 0 \quad \forall k \neq 1, \quad T_1(0) = 3,$$

которые получаются приравниванием коэффициентов при одинаковых собственных функциях после подстановки выражения (A11) для функции V(x,t) в начальное условие (A10). Для каждого k нетрудно построить решения соответствующих задач Коши:

$$T_k(t) = \frac{\gamma_k}{(2k+1)^2 + 1} \left(e^t - e^{-(2k+1)^2 t} \right), \ \forall k \neq 1,$$
$$T_1(t) = \frac{\gamma_1}{10} \left(e^t - e^{-9t} \right) + 3e^{-9t}$$

и, подставив найденные выражения для функций $T_k(t)$ в ряд (A11), получить решение задачи (A8)-(A10):

$$V(x,t) = \frac{24}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (e^t - e^{-(2k+1)^2 t})}{(2k+1)^2 [(2k+1)^2 + 1]} \sin \frac{2k+1}{2} x + 3e^{-9t} \sin \frac{3x}{2}.$$
(A13)

Следовательно, искомое решение имеет вид U(x,t) = x(t+2) + V(x,t), в котором функция V(x,t) определена выражением (A13).

• С помощью метода разделения переменных можно строить решения смешанных задач и в том случае, когда количество независимых переменных больше двух.

Пример 5. Однородная прямоугольная мембрана $(0 \le x \le l, 0 \le y \le b)$, закрепленная вдоль всего контура, лежащего в горизонтальной плоскости, имела в начальный момент форму $u(x,y,0)=\varphi(x,y)$ и начала колебаться с начальной скоростью $u_t(x,y,0)=\psi(x,y)$. Найти закон свободных колебаний мембраны, если натяжение мембраны T_0 равно ее поверхностной плотности (т.е. $a^2=\frac{T_0}{\rho}=1$).

Решение. Предполагая, что мембрана совершает малые колебания, определение закона свободных колебаний мембраны сводится к решению первой краевой задачи: найти решение волнового уравнения

$$u_{tt} = u_{xx} + u_{yy}, \quad 0 < x < l, \ 0 < y < b,$$
 (A1)

удовлетворяющее начальным условиям:

$$u(x, y, 0) = \varphi(x, y), \quad u_t(x, y, 0) = \psi(x, y)$$
 (A2)

и граничным условиям:

$$u(0, y, t) = u(l, y, t) = u(x, 0, t) = u(x, b, t) = 0.$$
(A3)

Будем искать ненулевое решение уравнения (А1) в виде произведения:

$$u(x, y, t) = X(x)Y(y)T(t). (A4)$$

Подставив выражение (А4) в уравнение (А1), получим равенство

$$T''XY = (X''Y + XY'')T,$$

разделив которое на ХҮТ, будем иметь

$$\frac{T^{\prime\prime}}{T} = \frac{X^{\prime\prime}}{X} + \frac{Y^{\prime\prime}}{Y}.$$

Каждое из входящих в последнее равенство отношений зависит от своей переменной, поэтому при любых x,y,t из рассматриваемой области задания независимых переменных равенство возможно, если эти отношения постоянны, т.е.

$$\frac{X''}{X} = -\lambda, \quad \frac{Y''}{Y} = -\mu \quad \text{if} \quad \frac{T''}{T} = -(\lambda + \mu). \tag{A5}$$

Используя граничные условия (A3), получим две задачи Штурма-Лиувилля для функций X(x) и Y(y):

$$X'' + \lambda X = 0, \quad X(0) = X(l) = 0,$$
 (A6)

$$Y'' + \mu Y = 0, \quad Y(0) = Y(b) = 0, \tag{A7}$$

которые имеют следующие решения соответственно:

$$\lambda_k = \left(\frac{k\pi}{l}\right)^2, \quad X_k(x) = \sin\frac{k\pi x}{l}, \quad k = 1, 2, \dots;$$

$$\mu_m = \left(\frac{m\pi}{b}\right)^2, \quad Y_m(y) = \sin\frac{m\pi y}{b}, \quad m = 1, 2, \dots$$

Тогда функция T(t) должна удовлетворять уравнению:

$$T''(t) + \gamma_{km}^2 T(t) = 0, \quad \gamma_{km} = \pi \sqrt{\left(\frac{k}{l}\right)^2 + \left(\frac{m}{b}\right)^2},$$

общее решение которого при различных k и m дают функции

$$T_{km}(t) = A_{km}\cos\gamma_{km}t + B_{km}\sin\gamma_{km}t.$$

Таким образом, функции

$$u_{km}(x, y, t) = X_k(x)Y_m(y)T_{km}(t) =$$

$$= (A_{km}\cos\gamma_{km}t + B_{km}\sin\gamma_{km}t)\sin\frac{k\pi x}{l}\sin\frac{m\pi y}{b}, \quad k, m \in N$$
 (A8)

удовлетворяют уравнению (A1) и граничным условиям (A3). Из линейности уравнения (A1) следует, что и любая комбинация решений (A8), т.е. формально составленный двойной ряд:

$$u(x,y,t) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \left(A_{km} \cos \gamma_{km} t + B_{km} \sin \gamma_{km} t \right) \sin \frac{k\pi x}{l} \sin \frac{m\pi y}{b} \quad (A9)$$

при условии, что он допускает двукратное почленное дифференцирование, также является решением уравнения (A1), удовлетворяющим условиям (A3). Подчиним функцию u(x,y,t), представленную рядом (A9), заданным начальным условиям:

$$u(x,y,0) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} A_{km} \sin \frac{k\pi x}{l} \sin \frac{m\pi y}{b} = \varphi(x,y)$$

И

$$u_t(x,y,0) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} B_{km} \pi \sqrt{\left(\frac{k}{l}\right)^2 + \left(\frac{m}{b}\right)^2} \sin\frac{k\pi x}{l} \sin\frac{m\pi y}{b} = \psi(x,y).$$

Откуда можно сделать вывод, что ряд (А9) будет определять искомое решение, если величины

$$A_{km}$$
 и $B_{km}\pi\sqrt{\left(rac{k}{l}
ight)^2+\left(rac{m}{b}
ight)^2}$

являются коэффициентами Фурье функций $\varphi(x,y)$ и $\psi(x,y)$ соответственно, т.е.

$$A_{km} = \frac{4}{bl} \int_0^l \int_0^b \varphi(x, y) \sin \frac{k\pi x}{l} \sin \frac{m\pi y}{b} \, dy \, dx \tag{A10}$$

И

$$B_{km} = \frac{4}{\pi\sqrt{(kb)^2 + (ml)^2}} \int_0^l \int_0^b \psi(x, y) \sin\frac{k\pi x}{l} \sin\frac{m\pi y}{b} \, dy \, dx. \quad (A11)$$

Замечание. Ряд (A9), в котором коэффициенты A_{km} и B_{km} определяются по формулам (A10), (A11), дает классическое решение краевой задачи, если функции $\varphi(x,y)$ и $\psi(x,y)$ удовлетворяют граничным условиям и принадлежат классу функций C^3 в прямоугольнике: $0 \le x \le l, \ 0 \le y \le b. \ \triangleleft$

Пример 6. Найти стационарное распределение температуры в прямоугольнике $D = \{(x,y) : 0 \le x \le a, \ 0 \le y \le b\}$, если на границе области D поддерживается заданная температура:

$$u(x, o) = u(x, b) = 0, \quad 0 < x < a,$$
 (A1)

$$u(0,y) = \varphi(y) = y(b-y), \quad u(a,y) = \psi(y) = \sin\frac{3\pi y}{b}, \quad 0 < y < b.$$
 (A2)

Решение. > Определение стационарного распределения температуры сводится к решению краевой задачи для уравнения Лапласа:

$$\Delta u = u_{xx} + u_{yy} = 0 \tag{A3}$$

с заданными граничными условиями. Будем искать решение уравнения (A3) в виде произведения

$$u(x,y) = X(x) \cdot Y(y), \tag{A4}$$

подставив которое в уравнение (А3) и разделив переменные, получим два уравнения:

$$\frac{X''}{X} = -\frac{Y''}{Y} = c = \text{const.} \tag{A5}$$

Подстановка выражения (A4) в однородные граничные условия (A1) дает условия для функции Y(y):

$$Y(0) = Y(b) = 0$$

которые вместе с уравнением

$$Y'' + cY = 0, \quad 0 < y < b$$

приводят к задаче Штурма-Лиувилля. Ее решением будут собственные числа и собственные функции:

$$c_k = \left(\frac{k\pi}{b}\right)^2, \quad Y_k(y) = \sin\frac{k\pi y}{b}, \quad k \in \mathbb{N}.$$
 (*)

Подставляя найденные значения c_k во второе уравнение (A5), для функции X(x) получим уравнение

$$X'' - \left(\frac{k\pi}{b}\right)^2 X = 0.$$

Для различных $k \in N$ его решением будут функции

$$X_k(x) = A_k e^{\frac{k\pi}{b}x} + B_k e^{-\frac{k\pi}{b}x}.$$

Тогда решение уравнения (A3), удовлетворяющее граничным условиям (A1), запишем в виде:

$$u(x,y) = \sum_{k=1}^{\infty} \left(A_k e^{\frac{k\pi}{b}x} + B_k e^{-\frac{k\pi}{b}x} \right) \sin\frac{k\pi y}{b}. \tag{A6}$$

Потребуем, чтобы функция u(x,y) в виде (A6) удовлетворяла граничным условиям (A2):

$$u(0,y) = \sum_{k=1}^{\infty} (A_k + B_k) \sin \frac{k\pi y}{b} = \varphi(y) = y(b-y);$$

$$u(a,y) = \sum_{k=1}^{\infty} \left(A_k e^{\frac{k\pi}{b}a} + B_k e^{-\frac{k\pi}{b}a} \right) \sin\frac{k\pi y}{b} = \psi(y) = \sin\frac{3\pi y}{b}.$$

Рассматривая полученные равенства как разложения функций $\varphi(y)$ и $\psi(y)$ в ряд по собственным функциям $Y_k(y)$, получим для каждого $k \in N$ систему уравнений:

$$\begin{cases}
A_{k+}B_k = \alpha_k, \\
A_k e^{\frac{k\pi a}{b}} + B_k e^{-\frac{k\pi a}{b}} = \beta_k,
\end{cases}$$
(A7)

где

$$\alpha_{k} = \frac{2}{b} \int_{0}^{b} \varphi(y) \sin \frac{k\pi y}{b} dy =$$

$$= \frac{2}{b} \int_{0}^{b} y(b-y) \sin \frac{k\pi y}{b} dy = \frac{4b^{2}}{k^{3}\pi^{3}} (1 - (-1)^{k}), \quad k \in N;$$

$$\beta_{k} = 0 \quad \forall k \neq 3, \quad \beta_{3} = 1.$$
(A8)

Решая систему линейных уравнений (A7) относительно A_k и B_k , для каждого $k \in N$ найдем

$$A_k = \frac{\beta_k - \alpha_k e^{-\frac{k\pi a}{b}}}{2 \operatorname{sh} \frac{k\pi a}{b}}, \quad B_k = \frac{\alpha_k e^{\frac{k\pi a}{b}} - \beta_k}{2 \operatorname{sh} \frac{k\pi a}{b}}.$$
 (A9)

Подставляя выражения для коэффициентов A_k и B_k (A9) в ряд (A6), получим решение краевой задачи:

$$u(x,t) = \sum_{k=1}^{\infty} \left(\beta_k \sinh \frac{k\pi x}{b} - \alpha_k \sinh \frac{k\pi (x-a)}{b} \right) \frac{\sin \frac{k\pi y}{b}}{\sin \frac{k\pi a}{b}}$$

или с учетом соотношений (А8)

$$u(x,y) = \frac{\operatorname{sh} \frac{3\pi x}{b}}{\operatorname{sh} \frac{3\pi a}{b}} \sin \frac{3\pi y}{b} - \frac{8b^2}{\pi^3} \sum_{k=0}^{\infty} \frac{\sin \frac{k\pi y}{b}}{(2k+1)^3} \frac{\operatorname{sh} \frac{k\pi (x-a)}{b}}{\operatorname{sh} \frac{k\pi a}{b}}. \triangleleft$$

Упражнения

- І. Однородные уравнения с однородными граничными условиями
- 27. Дан тонкий однородный стержень длиной l, на концах которого поддерживается нулевая температура. Начальное распределение температуры стержня описывается функцией f(x). Найти распределение температуры вдоль стержня при t>0. Найти решение в случае, когда

$$f(x) = \begin{cases} x, & 0 < x \le \frac{l}{2}, \\ l - x, & \frac{l}{2} < x < l. \end{cases}$$

- **28.** В полуполосе 0 < x < l, t > 0 решите следующие задачи:
 - 1) $u_t = a^2 \cdot u_{xx}$, $u(0,t) = u_x(l,t) = 0$, u(x,0) = f(x);
 - 2) $u_t = a^2 \cdot u_{xx}$, $u_x(0,t) = u(l,t) = 0$, u(x,0) = A(l-x), A = const > 0;
 - 3) $u_t = a^2 \cdot u_{xx}$, $u_x(0,t) = u_x(l,t) = 0$, u(x,0) = Bx, B = const > 0.
- **29.** Найти температуру стержня 0 < x < l с теплоизолированной боковой поверхностью, один конец которого (x = l) поддерживается при нулевой температуре, а на другом (x = 0) происходит конвективный теплообмен со средой нулевой температуры. Начальная температура стержня равна $u_o = const.$
- **30.** Дана струна, закрепленная на концах x=0 и x=l. В начальный момент струна имеет форму $u(x,0)=\phi(x)$. Определите смещение точек струны от положения равновесия, если их начальные скорости равны $\psi(x)$.
- **31.** В полуполосе 0 < x < l, t > 0 для уравнения $u_{tt} = a^2 \cdot u_{xx}$ решите смешанные задачи со следующими условиями:
 - 1) $u_x(0,t) = u_x(l,t) = 0$, u(x,0) = x, $u_t(x,0) = 1$;
 - 2) $u_x(0,t) = u(l,t) = 0$, $u(x,0) = \cos\frac{\pi x}{2l}$, $u_t(x,0) = \cos\frac{3\pi x}{2l} + \cos\frac{5\pi x}{2l}$;
 - 3) $u(0,t) = u_x(l,t) + h \cdot u(l,t) = 0, h = const > 0,$ $u(x,0) = f(x), \quad u_t(x,0) = g(x).$
- **32.** Пренебрегая реакцией среды, определите поперечные колебания однородной прямоугольной мембраны 0 < x < s, 0 < y < p с жестко закрепленным краем для случая, когда:
 - 1) начальное отклонение мембраны равно $\sin \frac{\pi x}{s} \cdot \sin \frac{\pi y}{p}$, а начальные скорости равны 0;
 - 2) в начальный момент t=0 мембрана получает поперечный сосредоточенный импульс I в точке $(x_o,y_o), 0 < x_o < s, 0 < y_o < p$, а начальное положение покой;

3) мембрана возбуждена начальным распределением скоростей

$$u_t(x, y, 0) = A \cdot (s - x) \cdot \sin \frac{\pi y}{p}$$

при нулевом начальном отклонении;

- 4) возбуждение вызвано начальным отклонением Axy с нулевыми начальными скоростями точек мембраны.
- 33. В кубе 0 < x, y, z < l происходит диффузия вещества, частицы которого распадаются со скоростью, пропорциональной его концентрации. Определите концентрацию вещества в этом кубе при t > 0, если начальная концентрация вещества в нем постоянна и равна U. Концентрация вещества на границе куба поддерживается равной 0.
- **34.** Растворенное вещество с начальной концентрацией $C_0 = const$ диффундирует из раствора, заключенного между плоскостями x=0 и x=h, в растворитель, ограниченный плоскостями x=h и x=l. Определить процесс выравнивания концентрации, предполагая, что границы x=0 и x=l непроницаемы для вещества.
- 35. Дан однородный шар радиусом R, центр которого расположен в началь координат. Известно, что начальная температура любой точки шара зависит только от расстояния r этой точки от центра шара. Во все время наблюдения внешняя поверхность поддерживается при нулевой температуре. Определите температуру любой точки внутри сферы в момент времени t>0.
- 36. Однородный шар радиусом R находится при постоянной температуре u_0 и окружен сферической оболочкой из того же материала толщиной R, находящейся при температуре, равной нулю. Найти температуру в точках внутри шара на расстоянии r от центра в момент времени t>0.
- 37. Однородное твердое тело ограничено концентрическими сферами с радиусами R и 2R. Внутренняя поверхность тела непроницаема для тепла. Шаровой слой нагрет до температуры u_0 и затем охлаждается в среде с нулевой температурой. Найти температуру в точках внутри шарового слоя в момент времени t>0.

II. Неоднородные краевые задачи

- 38. Решите следующие смешанные задачи:
 - 1) $u_t = a^2 \cdot u_{xx} + f(x,t), \quad 0 < x < l, \ t > 0,$ $u(0,t) = u(l,t) = 0, \quad u(x,0) = g(x);$
 - 2) $u_t = 16 \cdot u_{xx} + 2$, 0 < x < 7, t > 0, $u_x(0,t) = u(7,t) = 0$, u(x,0) = 0;
 - 3) $u_t = a^2 \cdot u_{xx} + 2 \cdot \cos \frac{\pi x}{l}, \quad 0 < x < l, \ t > 0,$ $u_x(0,t) = u_x(l,t) = 0, \quad u(x,0) = g(x);$
 - 4) $u_{tt} = u_{xx} + 2b$, 0 < x < l, t > 0, b = const, u(0,t) = u(l,t) = 0, $u(x,0) = u_t(x,0) = 0$;
 - 5) $u_{tt} = u_{xx} + \cos t$, $0 < x < \pi$, t > 0, $u(0,t) = u(\pi,t) = 0$, $u(x,0) = u_t(x,0) = 0$.
 - 6) $u_{tt} = a^2 \cdot u_{xx} + A \cdot x \cdot e^{-t}, \quad 0 < x < l, \ t > 0,$ $u(0,t) = u(l,t) = 0, \quad u(x,0) = 2 \cdot \sin \frac{\pi x}{l}, \quad u_t(x,0) = 0;$
 - 7) $u_{tt} = a^2 \cdot u_{xx} + A \cdot e^{-t} \cdot \cos \frac{x}{2}, \quad 0 < x < \pi, \ t > 0,$ $u_x(0,t) = u(\pi,t) = 0, \quad u(x,0) = 0, \quad u_t(x,0) = 4 \cdot \sin \frac{3x}{2} \cdot \sin x.$
- **39.** Дана струна, закрепленная на концах x = 0, x = 10. В начальный момент струна имеет форму параболы $u(x,0) = x^2 10x$. Определить смещение точек струны от положения равновесия, если их начальные скорости отсутствуют. Уравнение колебаний имеет вид:

$$u_{tt} = 25 \cdot u_{xx} + 7 \cdot \sin t \cdot \sin \frac{3\pi x}{10}.$$

- 40. Дан тонкий однородный стержень длиной l, начальная температура которого равна нулю. На конце x=l температура поддерживается равной нулю, а на конце x=0 она растет линейно со временем, так что u(0,t)=At, A=const. Найти распределение температуры вдоль стержня при t>0.
- 41. Решить следующие смешанные задачи:
 - 1) $u_t = a^2 \cdot u_{xx}$, 0 < x < l, t > 0, $u_x(0,t) = At$, $u_x(l,t) = T$, u(x,0) = 0, A, T const.

- 2) $u_t = a^2 \cdot u_{xx} \beta u$, 0 < x < l, t > 0, u(0,t) = u(l,t) = 0, u(x,0) = g(x).
- 3) $u_t u_{xx} + 2 \cdot u_x u = e^x \cdot \sin x t$, $0 < x < \pi$, t > 0, $u(0,t) = u(\pi,t) = t+1$, $u(x,0) = 1 + e^x \cdot \sin 2x$.
- 4) $u_t u_{xx} + u = t(t+2) + x 1 + e^{-t} \cdot \cos \frac{5\pi x}{2}$, 0 < x < 1, t > 0, $u_x(0,t) = 1$, $u(1,t) = t^2$, $u(x,0) = \cos \frac{\pi x}{2} + x 1$.
- 5) $u_{tt} = u_{xx}$, $0 < x < \pi$, t > 0, $u(0,t) = e^{-t}$, $u(\pi,t) = t$, $u(x,0) = \sin x \cdot \cos x$, $u_t(x,0) = 1$.
- 6) $u_{tt} = u_{xx}$, $0 < x < \pi$, t > 0, u(0,t) = t, $u_x(\pi,t) = 1$, $u(x,0) = \sin \frac{x}{2}$, $u_t(x,0) = 1$.
- 7) $u_{tt} = a^2 \cdot u_{xx} + f(x), \quad 0 < x < l, \ t > 0,$ $u_x(0,t) = \alpha, \quad u_x(l,t) = \beta, \quad \alpha, \beta - const,$ $u(x,0) = \phi(x), \quad u_t(x,0) = \mu(x).$
- 8) $u_{tt} + 2 \cdot u_t = u_{xx} + 4x + 8 \cdot e^t \cdot \cos x$, $0 < x < \frac{\pi}{2}, t > 0$, $u_x(0,t) = 2t$, $u(\pi/2,t) = \pi t$, $u(x,0) = \cos x$, $u_t(x,0) = 2x$.
- 9) $u_{tt} \frac{1}{4} \cdot u_{xx} u_x + 2u_t 2u 2 \cdot e^{-2x t} \cdot \sin x \cos 2x = f(x, t),$ $0 < x < \pi/2, \ t > 0,$ $u(0, t) = 0, \quad u_x(\pi/2, t) + 2 \cdot u(\pi/2, t) = (1 + \pi) \cdot \sin t,$ $u(x, 0) = e^{-2x} \cdot \sin 3x, \quad u_t(x, 0) = x,$ $f(x, t) = x \cdot (2 \cos t 3 \sin t) \sin t.$
- 42. Пренебрегая реакцией среды, определить поперечные колебания однородной прямоугольной мембраны 0 < x < s, 0 < y < p с жестко закрепленным краем для случая, когда колебания вызваны непрерывно распределенной по мембране силой с плотностью

$$f(x, y, t) = e^{-t} \cdot x \cdot \sin \frac{2\pi y}{p}.$$

43. Решите следующую смешанную задачу:

$$\begin{aligned} &u_t = u_{xx} + u_{yy}, & 0 < x, y < 1, \ t > 0, \\ &u(0, y, t) = yt, & u(1, y, t) = t, & 0 < y < 1, \ t > 0, \\ &u(x, 0, t) = xt, & u(x, 1, t) = t, & 0 < x < 1, \ t > 0, \end{aligned}$$

$$u(x, y, 0) = \sin 5\pi x \cdot \sin \pi y$$
.

- **44.** Найти распределение температуры в однородном шаре радиусом R, внутри которого, начиная с момента времени t=0, действует источник тепла с постоянной плотностью Q, а поверхность поддерживается при температуре, равной нулю. Начальная температура шара равна нулю.
- 45. Начальная температура однородного шара радиусом R равна нулю. Шар нагревается равномерно по всей поверхности постоянным тепловым потоком q. Найти распределение температуры внутри шара в любой момент времени t>0.
- **46.** Сфера радиусом R содержит растворенное вещество с начальной концентрацией $C_0 = const.$ Концентрация на поверхности сферы поддерживается постоянной, равной $C_1 > C_0$. Найти количество абсорбированного (поглощенного) вещества в момент времени t > 0.
 - III. Краевые задачи для уравнений эллиптического типа
- **47.** Найти решение уравнения Лапласа в прямоугольнике $D: 0 \le x \le a, 0 \le y \le b$, удовлетворяющее краевым условиям: $u(0,y) = A, \quad u(a,y) = Ay, \quad u_{y}(x,0) = u_{y}(x,b) = 0, \quad A = const > 0.$
- **48.** Найти решение уравнения Лапласа в прямоугольнике $D: 0 \le x \le a, 0 \le y \le b$, если на границе этого прямоугольника u(x,y) принимает следующие значения: $u(0,y) = A \cdot \sin(\pi y/b), \quad u(a,y) = 0$,

$$u(x,0) = B \cdot \sin(\pi x/a), \quad u(x,b) = 0.$$

- **49.** Найти решение уравнения Пуассона $u_{xx}+u_{yy}=-2$ в прямоугольнике $D:0\leq x\leq a,0\leq y\leq b,$ если оно на контуре этой области обращается в ноль.
- 50. Решить краевую задачу:

$$u_{xx} + u_{yy} = x^2 \cdot y$$
, $0 \le x \le a$, $0 \le y \le b$,
 $u(0,y) = u(a,y) = u(x,0) = u_y(x,b) = 0$.

51. Найти распределение потенциала электростатистического поля u(x,y,z) внутри прямоугольного параллелепипеда с проводящими стенками, если его боковые грани и верхнее основание заземлены, а нижнее основание заряжено до потенциала V.

52. На границе тонкой пластинки в форме кругового сектора $S = \{(r,\phi): r \leq a, 0 \leq \phi \leq \alpha\}$ задана температура

$$u(r,\phi) = \begin{cases} f(\phi), & r = a, \\ 0, & \phi = 0, \phi = \alpha. \end{cases}$$

Найти стационарное термическое поле в пластине.

- **53.** Найти стационарное распределение температуры в тонкой пластинке, имеющей форму кругового сектора, радиусы которого поддерживаются при температуре u_1 , а дуга окружности при температуре u_2 .
- **54.** Решить задачу Дирихле для уравнения Лапласа в круге $0 \le r < 3$ при условии $u(3,\phi) = \phi^2 + 2 \cdot \phi$.
- **55.** В круге $0 \le r < R$ найти гармоническую функцию, удовлетворяющую граничному условию:

$$u_r(R,\phi) + h \cdot u(R,\phi) = T + Q \cdot \sin \phi + U \cdot \cos 3\phi,$$

где h, T, Q, U – заданные const > 0.

56. В круге $x^2 + y^2 = r^2 < R^2$ решите задачу Дирихле

$$\Delta u(x, y) = 0, \quad 0 \le r < R,$$

$$u(x,y) = g(x,y), \quad r = R,$$

если:

1)
$$g(x,y) = x + xy;$$
 2) $g(x,y) = 2(x^2 + y);$

3)
$$q(x,y) = 4y^3$$
; 4) $q(x,y) = x^2 - 2y^2$;

5)
$$g(x,y) = 4xy^2;$$
 6) $g(x,y) = \frac{1}{R}y^2 + Rxy;$

- 7) $g(x,y) = 2x^2 x y$.
- **57.** Вне круга $x^2 + y^2 = r^2 \le R^2$ решите задачу Дирихле

$$\Delta u(x,y) = 0, \quad R \le r < \infty,$$

$$u(x, y) = q(x, y), \quad r = R, \quad |u(x, y)| < \infty,$$

если:

1)
$$g(x,y) = y + 2xy;$$
 2) $g(x,y) = x^2 - y^2;$

3)
$$g(x,y) = x^2 + 1;$$
 4) $g(x,y) = y^2 - xy;$

5)
$$g(x,y) = y^2 + x + y;$$
 6) $g(x,y) = 2x^2 - x + y.$

58. В круге $x^2 + y^2 = r^2 < R^2$ решите задачу Дирихле для уравнения Пуассона

$$\Delta u(x,y) = f(x,y), \quad 0 \le r < R,$$

$$u(x,y) = g(x,y), \quad r = R,$$

если:

1)
$$f(x,y) = 1$$
, $g(x,y) = 0$; 2) $f(x,y) = x$, $g(x,y) = 0$;

3)
$$f(x,y) = -1$$
, $g(x,y) = y^2/2$; 4) $f(x,y) = y$, $g(x,y) = 1$;

5)
$$f(x,y) = 4$$
, $g(x,y) = 1$.

59. В круге $x^2 + y^2 = r^2 < R^2$ решите задачу Неймана

$$\Delta u(x,y) = 0, \quad 0 \le r < R,$$

$$\frac{\partial u(x,y)}{\partial r} = g(x,y), \quad r = R,$$

если:

1)
$$g(x,y) = A;$$
 2) $g(x,y) = 2x^2 + A;$

3)
$$g(x,y) = 2xy;$$
 4) $g(x,y) = Ay^2 - B;$

5)
$$g(x,y) = Ax^2 - By^2 + y$$
.

Здесь A, B – постоянные.

60. В круге $K: 0 \le r < R, \ 0 \le \phi \le 2\pi$ найти гармоническую функцию $u(r,\phi) \in C^1(K)$, удовлетворяющую условию

$$u(R,\phi) - u(R_1,\phi) = \sin 2\phi + \cos 3\phi,$$

где $0 < R_1 < R$.

61. Вне круга $\overline{K}: 0 \le r \le R, \ 0 \le \phi \le 2\pi$ найти ограниченную гармоническую функцию $u(r,\phi) \in C^1(\overline{K})$, удовлетворяющую условию

$$u(R, \phi) - u(R_1, \phi) = \sin \phi + 3\cos^2 \phi - A,$$

где $R < R_1 < \infty$ и A = const.

62. Решить уравнение Лапласа внутри кольцевого сектора, ограниченного дугами окружностей r=a, r=b и радиусами $\phi=0, \phi=\alpha,$ если заданы следующие условия на границах:

$$u(r,\phi)=0$$
 при $\phi=0,\phi=\alpha,\quad u(r,\phi)=\left\{ egin{array}{ll} f(\phi), & r=a, \\ F(\phi), & r=b. \end{array}
ight.$

63. Решить задачу Дирихле в кольце:

$$u_{xx} + u_{yy} = 0, \quad r_1^2 < x^2 + y^2 < r_2^2,$$
 $u(x,y) = f_1(x,y)$ при $x^2 + y^2 = r_1^2,$ $u(x,y) = f_2(x,y)$ при $x^2 + y^2 = r_2^2.$

Построить решение в случае, когда

$$r_1 = 2$$
, $r_2 = 3$, $f_1(x, y) = x$, $f_2(x, y) = y$.

64. Решить краевую задачу для уравнения Пуассона в кольце $1 \le r \le 2$:

$$u_{xx} + u_{yy} = \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}, \quad u|_{r=1} = 0, u_r|_{r=2} = 0.$$

65. Решить уравнение

$$a^2 \cdot u_{xx} + b^2 \cdot u_{yy} = 0 \quad (a, b - const)$$

внутри эллипса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$$

с краевым условием $u|_{\Gamma}=xy$, где Γ – граница эллипса.

66. Решить уравнение Пуассона

$$r^2 \cdot u_{rr} + r \cdot u_r + u_{\phi\phi} = r^2 \cdot \sin\phi + r \cdot \cos\phi$$

в кольце $1 \le r \le 2$, если $u(1, \phi) = 1$, $u(2, \phi) = 2$.

§5. Метод интегральных преобразований

Определение. Интегральным преобразованием (образом) функции f(t) называется интеграл вида

$$F(z) = \int_{a}^{b} K(z,t)f(t) dt.$$
 (5.1)

Функция f(t) называется *оригиналом своего образа* F(z), а функция K(z,t) – ядром интегрального преобразования.

Интегральное преобразование над некоторым классом функций f(t) определяется выбором ядра K(z,t) и промежутком интегрирования (a,b).

Когда функция f(t) определена для всех действительных значений t, вводится $npeo6pasoeanue\ \Phi ypbe$

$$F(\eta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\eta t} f(t) dt.$$
 (5.2)

В случае, когда функция f(t) – непрерывная всюду, кроме, быть может, конечного числа точек разрыва первого рода, для существования преобразования Фурье достаточна абсолютная сходимость интеграла

$$\int_{-\infty}^{+\infty} f(t) dt.$$

Оригинал для образа Фурье (5.2) определяется по формуле обращения (обратное преобразование Фурье)

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\eta t} F(\eta) \, d\eta. \tag{5.3}$$

Если f(t) – четная функция, то преобразования Фурье (5.2) и (5.3) переходят во взаимно обратные косинус-преобразования Фурье

$$F(\eta) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos \eta t \, dt, \quad f(t) = \sqrt{\frac{2}{\pi}} \int_0^\infty F(\eta) \cos \eta t \, d\eta,$$

а если f(t) – нечетна, то, соответственно, – в $\mathit{cunyc}\text{-}\mathit{npeo6pasobahus}$ $\mathit{\Phi y-pbe}$

$$F(\eta) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin \eta t \, dt, \quad f(t) = \sqrt{\frac{2}{\pi}} \int_0^\infty F(\eta) \sin \eta t \, d\eta.$$

Чтобы решить краевую задачу для функции u(x,t) с помощью интегрального преобразования Фурье, по переменному x переходят к задаче для образа Фурье этой функции $U(\eta,t)$, находят этот образ. После этого с помощью обратного преобразования Фурье "восстанавливают оригинал". Выбор ядра K(z,t) для задач на полупрямой зависит от вида граничного условия.

Если $x=(x_1,\ldots,x_n)\in R^n, (n\geq 2)$, для функции f(x,t) вводится многомерное преобразование Фурье, которое определяется формулами:

$$F(\xi) = \frac{1}{(\sqrt{2\pi})^n} \int_{R^n} e^{-i(x,\xi)} f(x) \, dx,$$

$$f(x) = \frac{1}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} e^{i(x,\xi)} F(\xi) d\xi,$$

где $\xi = (\xi_1, \dots, \xi_n), \quad (x, \xi) = x_1 \xi_1 + \dots + x_n \xi_n, \quad dx = dx_1 \dots dx_n, \quad d\xi = d\xi_1 \dots d\xi_n.$

Пример 1. С помощью интегрального преобразования Фурье решить следующую краевую задачу:

$$u_t = a^2 u_{xx}, \quad -\infty < x < +\infty, \ t > 0, \tag{A1}$$

$$u(x,0) = f(x), \quad -\infty < x < +\infty. \tag{A2}$$

Решение. Умножим обе части уравнения (A1) на $\frac{1}{\sqrt{2\pi}}e^{-i\lambda x}$ и проинтегрируем полученное равенство по x на промежутке от $-\infty$ до $+\infty$, предполагая, что функция u и ее производная u_x достаточно быстро стремятся к нулю при $x \to \pm \infty$. Преобразование левой части уравнения (A1) дает:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u_t e^{-i\lambda x} dx = \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x,t) e^{-i\lambda x} dx \right) = U_t(\lambda,t).$$

Преобразуем правую часть, применяя правило интегрирования по частям:

$$a^{2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u_{xx} e^{-i\lambda x} dx =$$

$$= a^{2} \frac{1}{\sqrt{2\pi}} u_{x} e^{-i\lambda x} \Big|_{x=-\infty}^{x=+\infty} + a^{2} \frac{1}{\sqrt{2\pi}} i\lambda u e^{-i\lambda x} \Big|_{x=-\infty}^{x=+\infty} -$$

$$-a^{2}\lambda^{2}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}ue^{-i\lambda x}\,dx = -a^{2}\lambda^{2}U(\lambda,t).$$

Применив преобразование Фурье к начальным условиям (А2), получим

$$U(\lambda,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\lambda x} f(x) dx = F(\lambda). \tag{A3}$$

Таким образом, с помощью преобразования Φ урье по переменной x:

$$U(\lambda, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i\lambda x} u(x, t) dx, \qquad (A4)$$

исходную задачу (A1)-(A2) свели к задаче Коши с параметром λ :

$$U_t + a^2 \lambda^2 U = 0, \quad t > 0, \quad U(\lambda, 0) = F(\lambda),$$
 (A5)

решением которой является функция:

$$U(\lambda, t) = F(\lambda)e^{-a^2\lambda^2t}$$

Для построения решения исходной задачи к полученному выражению для изображения $U(\lambda,t)$ применим обратное преобразование Фурье. Учитывая формулу (А3), будем иметь:

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} U(\lambda,t) e^{i\lambda x} \, d\lambda = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\lambda) e^{-a^2 \lambda^2 t + i\lambda x} \, d\lambda = \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\xi) \int_{-\infty}^{+\infty} e^{-a^2 \lambda^2 t} e^{i\lambda(x-\xi)} \, d\lambda \, d\xi = \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\xi) \left\{ \int_{0}^{+\infty} e^{-a^2 \lambda^2 t} e^{i\lambda(x-\xi)} \, d\lambda + \right. \\ &\quad + \int_{-\infty}^{0} e^{-a^2 \lambda^2 t} e^{i\lambda(x-\xi)} \, d\lambda \right\} \, d\xi = \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\xi) \int_{0}^{+\infty} e^{-a^2 \lambda^2 t} (e^{i\lambda(x-\xi)} + e^{-i\lambda(x-\xi)}) \, d\lambda \, d\xi = \\ &= \frac{1}{\pi} \int_{-\infty}^{+\infty} f(\xi) \int_{0}^{+\infty} e^{-a^2 \lambda^2 t} \cos \lambda (x-\xi) \, d\lambda \, d\xi. \end{split}$$

Вычислим интеграл

$$I(x) = \int_0^{+\infty} e^{-\alpha \lambda^2} \cos \lambda x \, d\lambda, \quad \alpha > 0, \tag{A6}$$

который сходится при любых значениях параметра x (по признаку Вейерштрасса). Дифференцируя интеграл (A6) по параметру x и применяя правило интегрирования по частям:

$$I'(x) = -\int_0^{+\infty} e^{-\alpha\lambda^2} \lambda \sin \lambda x \, d\lambda =$$

$$= \frac{1}{2\alpha} e^{-\alpha\lambda^2} \sin \lambda x \Big|_{\lambda=-\infty}^{\lambda=+\infty} - \frac{x}{2\alpha} \int_0^{+\infty} e^{-\alpha\lambda^2} \cos \lambda x \, d\lambda = -\frac{x}{2\alpha} I(x),$$

получим дифференциальное уравнение относительно I(x):

$$I'(x) + \frac{x}{2\alpha}I(x) = 0.$$

Его общее решение имеет вид

$$I(x) = C \cdot e^{-\frac{x^2}{\alpha}}.$$

Учитывая равенство

$$I(0) = \int_0^{+\infty} e^{-\alpha\lambda^2} d\lambda = \frac{1}{\sqrt{\alpha}} \int_0^{+\infty} e^{-\gamma^2} d\gamma = \frac{\sqrt{\pi}}{2\sqrt{\alpha}},$$

найдем $C=\frac{\sqrt{\pi}}{2\sqrt{\alpha}}$ и, следовательно, искомое значение интеграла (A6):

$$\int_{0}^{+\infty} e^{-\alpha\lambda^{2}} \cos \lambda x \, d\lambda = \frac{\sqrt{\pi}}{2\sqrt{\alpha}} e^{-\frac{x^{2}}{\alpha}}.$$

Таким образом, окончательно выражение для решения краевой задачи примет вид:

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} f(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi. \triangleleft$$

Замечание. В ходе решения задачи была установлена справедливость следующих равенств:

$$\int_{-\infty}^{+\infty} e^{-a^2\lambda^2 t + i\lambda(x-\xi)} d\lambda = 2 \int_0^{+\infty} e^{-a^2\lambda^2 t} \cos\lambda(x-\xi) d\lambda = \frac{\sqrt{\pi}}{\sqrt{\alpha}} e^{-\frac{(x-\xi)^2}{\alpha}}.$$
(A7)

Пример 2. В первой четверти плоскости (x,t) найти решение краевой задачи:

$$u_{tt} = a^2 u_{xx}, \quad x, t > 0, \tag{A1}$$

$$u(0,t) = \mu(t), \quad t > 0,$$
 (A2)

$$u(x,0) = u_t(x,0) = 0, \quad x > 0.$$
 (A3)

Решение. \triangleright Для решения задачи воспользуемся синус-преобразованием Фурье по переменной x:

$$U(\lambda, t) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} u(x, t) \sin \lambda x \, dx. \tag{A4}$$

Умножим обе части уравнения (A1) на ядро преобразования $\sqrt{\frac{2}{\pi}} \sin \lambda x$ и проинтегрируем полученное равенство по x на промежутке от 0 до $+\infty$. Преобразование левой части дает $U_{tt}(\lambda,t)$. К интегралу в правой части применим правило интегрирования по частям, будем иметь:

$$U_{tt}(\lambda, t) = a^2 \sqrt{\frac{2}{\pi}} \int_0^{+\infty} u_{xx} \sin \lambda x \, dx = a^2 \sqrt{\frac{2}{\pi}} u_x \sin \lambda x \bigg|_{x=0}^{x=+\infty} - a^2 \sqrt{\frac{2}{\pi}} \lambda u \cos \lambda x \bigg|_{x=0}^{x=+\infty} - a^2 \lambda^2 \sqrt{\frac{2}{\pi}} \int_0^{+\infty} u \sin \lambda x \, dx.$$

Предполагая, что функция u(x,t) и ее производная u_x стремятся к 0 при $x\to +\infty$, и используя граничные условия (A2), получим уравнение относительно изображения $U(\lambda,t)$:

$$U_{tt}(\lambda, t) = -a^2 \lambda^2 U(\lambda, t) + a^2 \sqrt{\frac{2}{\pi}} \lambda \mu(t). \tag{A5}$$

Условия (A3) после применения к ним синус-преобразования Фурье дают:

$$U(\lambda, 0) = U_t(\lambda, 0) = 0. \tag{A6}$$

Таким образом, исходная задача (A1)-(A3) редуцируется к задаче Коши (A5)-(A6), в которой λ играет роль параметра. Решение уравнения (A5), удовлетворяющее начальным условиям (A6), имеет вид

$$U(\lambda, t) = a\sqrt{\frac{2}{\pi}} \int_0^t \mu(\tau) \sin a\lambda (t - \tau) d\tau.$$

С помощью обратного синус-преобразования Фурье будем иметь:

$$u(x,t) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} U(\lambda,t) \sin \lambda x \, d\lambda$$
$$= \frac{2a}{\pi} \int_0^{+\infty} d\lambda \int_0^t \mu(\tau) \sin \lambda x \cdot \sin a\lambda (t-\tau) \, d\tau$$
$$= \frac{2a}{\pi} \int_0^t \mu(\tau) \int_0^{+\infty} \sin \lambda x \cdot \sin a\lambda (t-\tau) \, d\lambda \, d\tau.$$

Вычислим сначала внутренний интеграл. Так как

$$2\int_0^{+\infty} \sin \lambda x \cdot \sin a\lambda (t - \tau) d\lambda =$$

$$= \int_0^{+\infty} \cos \lambda [x - a(t - \tau)] d\lambda - \int_0^{+\infty} \cos \lambda [x + a(t - \tau)] d\lambda,$$

то, учитывая интегральное представление (в виде интеграла Фурье) $\delta-$ функции Дирака

$$\delta(x - x_0) = \frac{1}{\pi} \int_0^{+\infty} \cos \lambda (x - x_0) \, d\lambda,$$

будем иметь

$$2\int_0^{+\infty} \sin \lambda x \cdot \sin a\lambda (t-\tau) \, d\lambda = \pi [\delta(x-a(t-\tau)) - \delta(x+a(t-\tau))]$$

и, следовательно,

$$u(x,t) = a \int_0^t \mu(\tau) [\delta(x - a(t - \tau)) - \delta(x + a(t - \tau))] d\tau =$$
$$= \int_0^{at} \mu(t - \frac{\xi}{a}) [\delta(x - \xi) - \delta(x + \xi) d\xi.$$

Так как $\delta(x+\xi)\equiv 0$ при x>0, то окончательно получаем

$$u(x,t) = \int_0^{at} \mu(t-\frac{\xi}{a}) \delta(x-\xi) \, d\xi = \left\{ \begin{array}{ll} 0 & \text{при } t < \frac{x}{a}, \\ \mu(t-\frac{x}{a}) & \text{при } t > \frac{x}{a}. \end{array} \right. \triangleleft$$

Пример 3. Найти решение краевой задачи:

$$u_t = a^2(u_{xx} + u_{yy}), \quad |x| < \infty, \ |y| < \infty, \ t > 0,$$
 (A1)

$$u(x, y, 0) = f(x, y), \quad |x| < \infty, \ |y| < \infty.$$
 (A2)

Решение. Применим кратное преобразование Фурье к функции u(x,y,t) по двум пространственным переменным x и y, введя обозначение для изображения:

$$U(\lambda, \mu, t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u(\xi, \eta, t) e^{-i(\lambda \xi + \mu \eta)} d\xi d\eta.$$

Умножая уравнение (A1) и условие (A2) на ядро преобразования $e^{-i(\lambda x + \mu y)}$ и интегрируя полученное равенство по переменным x и y от $-\infty$ до $+\infty$, применив правило интегрирования по частям и учитывая, что функция u и ее производные u_x и u_y достаточно быстро стремятся к нулю при $x \to \pm \infty$, получим обыкновенное дифференциальное уравнение для изображения U:

$$U_t + a^2(\lambda^2 + \mu^2)U = 0, \quad t > 0, \tag{A3}$$

с начальным условием

$$U|_{t=0} = F(\lambda, \mu), \tag{A4}$$

где

$$F(\lambda,\mu) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\xi,\eta) e^{-i(\lambda\xi + \mu\eta)} d\xi d\eta. \tag{A5}$$

Решением задачи (А3)-(А4) будет функция

$$U(\lambda, \mu, t) = F(\lambda, \mu)e^{-a^2(\lambda^2 + \mu^2)t}.$$

Решение исходной краевой задачи построим, выполнив обратное преобразование Фурье:

$$u(x,y,t) = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} U(\lambda,\mu,t) e^{i(\lambda x + \mu y)} \, d\lambda \, d\mu =$$

$$=\frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}F(\lambda,\mu)e^{-a^2(\lambda^2+\nu^2)t}e^{i(\lambda x+\mu y)}\,d\lambda\,d\mu=$$

$$\begin{split} &= \frac{1}{4\pi^2} \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} e^{-a^2(\lambda^2 + \mu^2)t} \, d\lambda \, d\mu \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f(\xi, \eta) e^{i\lambda(x - \xi) + i\mu(y - \eta)} \, d\xi \, d\eta = \\ &= \frac{1}{4\pi^2} \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f(\xi, \eta) \, d\xi \, d\eta \int\limits_{-\infty}^{+\infty} e^{-a^2\lambda^2 t} e^{i\lambda(x - \xi)} \, d\lambda \int\limits_{-\infty}^{+\infty} e^{-a^2\mu^2 t} e^{i\mu(y - \eta)} \, d\mu. \end{split}$$

Так как (см. замечание к примеру 2)

$$\int_{-\infty}^{+\infty} e^{-a^2\lambda^2 t} e^{-i\lambda(x-\xi)} d\lambda = \frac{\sqrt{\pi}}{a\sqrt{t}} e^{-\frac{(x-\xi)^2}{4a^2t}},$$

то окончательное выражение для искомого решения примет вид

$$u(x,y,t) = \frac{1}{4a^2\pi t} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\xi,\eta) e^{-\frac{(x-\xi)^2 + (y-\eta)^2}{4a^2t}} d\xi d\eta. \triangleleft$$

Пример 4. С помощью преобразования Лапласа в области $\{(x,t): x>0, t>0\}$ найти решение уравнения

$$u_t = u_{xx} + u + B \cdot \cos x,\tag{A1}$$

удовлетворяющее краевым условиям:

$$u(0,t) = A \cdot e^{-3t}, \qquad u_x(0,t) = 0,$$
 (A2)

где A, B — постоянные величины.

Решение.> Применим преобразование Лапласа по переменной x:

$$u(x,t) \leftrightarrow U(p,t),$$

$$u_{xx} \leftrightarrow p^{2}U(p,t) - p \cdot u(0,t) - u_{x}(0,t) = p^{2}U(p,t) - p \cdot A \cdot e^{-3t},$$

$$B \cdot \cos x \leftrightarrow \frac{Bp}{p^{2} + 1}, \quad u_{t}(x,t) \leftrightarrow \frac{\partial U}{\partial t}.$$

После перехода к изображению относительно x уравнение (A1) примет вид:

$$\frac{\partial U}{\partial t} = (p^2 + 1)U - p \cdot A \cdot e^{-3t} + \frac{Bp}{p^2 + 1}.$$
(A3)

Полученное уравнение можно рассматривать как обыкновенное дифференциальное уравнение относительно t, в котором p играет роль параметра. Общее решение уравнения (A3) можно представить в виде суммы общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения:

$$U(p,t) = U_{\text{ОДH}}(p,t) + U_{\text{ЧАСТН}}(p,t). \tag{A4}$$

Общее решение соответствующего (АЗ) однородного уравнения имеет вид:

$$U_{\text{ОДH}}(p,t) = C_1(p) \cdot e^{(p^2+1)t}.$$
 (A5)

Частное решение ищем в виде:

$$U_{\text{Частн}}(p,t) = D_1(p) \cdot e^{-3t} + D_2(p),$$

подставляя которое в уравнение (А3), получаем:

$$-3D_1(p) \cdot e^{-3t} = (p^2 + 1)(D_1(p) \cdot e^{-3t} + D_2(p)) - p \cdot A \cdot e^{-3t} + \frac{Bp}{p^2 + 1}.$$

Отсюда для нахождения коэффициентов $D_1(p)$ и $D_2(p)$, зависящих от параметра p, составляем систему уравнений:

$$\begin{cases}
-3D_1(p) = D_1(p)(p^2 + 1) - pA, \\
(p^2 + 1)D_2(p) + \frac{Bp}{p^2 + 1} = 0,
\end{cases}$$

решение которой имеет вид:

$$D_1(p) = \frac{pA}{p^2 + 4}, \qquad D_2(p) = -\frac{Bp}{(p^2 + 1)^2}.$$

Таким образом, общее решение уравнения (А1) имеет вид:

$$U(p,t) = C_1(p)e^{(p^2+1)t} + \frac{pA}{p^2+4}e^{-3t} - \frac{Bp}{(p^2+1)^2}.$$

Используя свойство изображения $U(p,t)\to 0$ при $p\to \infty$, заключаем $C_1(p)=0$. Следовательно, имеем:

$$U(p,t) = \frac{pA}{p^2 + 4}e^{-3t} - \frac{Bp}{(p^2 + 1)^2}.$$

Так как

$$\frac{p}{p^2+4} \leftrightarrow \cos 2x,$$

$$\frac{p}{(p^2+1)^2} = \frac{p}{p^2+1} \cdot \frac{1}{p^2+1} \leftrightarrow \int_0^x \cos \xi \sin(x-\xi) d\xi = \frac{x}{2} \sin x,$$

то, используя свойство линейности преобразования Лапласа, получим оригинал u(x,t).

Ответ: $u(x,t) = Ae^{-3t}\cos 2x + B\frac{x}{2}\sin x$.

Пример 5. В области $\{(x,t): x>0, t>0\}$ найти решение уравнения

$$9u_{xx} + 4u_{tt} = 36 \cdot e^{2x} \cdot \sin 3t, \tag{A1}$$

удовлетворяющее следующим условиям:

$$u(0,t) = 0, \ u_x(0,t) = \sin 3t,$$
 (A2)

$$u(x,0) = 0, \ u_t(x,0) = 3x \cdot e^{2x}.$$
 (A3)

Решение.> Пусть U(p,t) – изображение по Лапласу функции u(x,t):

$$U(p,t) = \int_{0}^{\infty} e^{-px} u(x,t) dx.$$

Тогда

$$u_{xx}(x,t) \leftrightarrow p^2 U(p,t) - \sin 3t, \quad u_{tt} \leftrightarrow \frac{\partial^2 U}{\partial t^2}.$$

Так как $e^{2x} \leftrightarrow \frac{1}{p-2}$, то, применив к уравнению (A1) преобразование Лапласа, получим:

$$9(p^{2}U(p,t) - \sin 3t) + 4\frac{\partial^{2}U}{\partial t^{2}} = \frac{36 \cdot \sin 3t}{p-2}.$$
 (A4)

Добавим к уравнению (А4) краевые условия

$$U(p,0) = 0, \ U_t(p,0) = \frac{3}{(p-2)^2},$$
 (A5)

которые получены в результате применения преобразования Лапласа к условиям (А3).

Решим задачу (A4)–(A5) с помощью преобразования Лапласа. Обозначим через G(p,q) изображение по Лапласу относительно переменной t:

$$U(p,t) \leftrightarrow G(p,q) = \int_{0}^{\infty} e^{-qt} U(p,t) dt.$$
 (A6)

Применив преобразование Лапласа к (А4), получим:

$$9p^{2}G(p,q) - \frac{27}{q^{2} + 9} + 4\left(q^{2}G(p,q) - \frac{3}{(p-2)^{2}}\right) = \frac{36 \cdot 3}{(p-2)(q^{2} + 9)}. \quad (A7)$$

Решим уравнение (A7) относительно функции G(p,q):

$$G(p,q) = \frac{3}{(p-2)^2(q^2+9)}.$$

Выполняя последовательно обратные преобразования Лапласа, будем иметь:

$$U(p,t) = \frac{1}{(p-2)^2} \cdot \sin 3t \leftrightarrow xe^{2x} \sin 3t.$$

Ответ: $u(x,t) = x \cdot e^{2x} \cdot \sin 3t$.

Пример 6. Найти решение уравнения:

$$2u_{xx} + 5u_{xt} + 3u_{tt} = 0, \quad 0 < x, t < \infty, \tag{A1}$$

удовлетворяющее условиям:

$$u(0,t) = 0, \quad u_x(0,t) = f(t);$$
 (A2)

$$u(x,0) = g(x), \quad u_t(x,0) = 0.$$
 (A3)

Решение. Применим к решению уравнения преобразование Лапласа. Обозначим через U(p,t) — изображение функции u(x,t) по переменной x, G(p) — изображение функции g(x). Так как

$$u_{xx} \leftrightarrow p^{2}U(p,t) - f(t),$$

$$u_{tt} \leftrightarrow U_{tt},$$

$$u_{xt} \leftrightarrow \frac{\partial}{\partial t}(pU(p,t)) = pU_{t},$$

$$u(x,0) = g(x) \leftrightarrow G(p),$$

$$u_{t}(x,0) = 0 \leftrightarrow 0,$$

то после перехода к изображеням уравнение (А1) примет вид:

$$2p^2U - 2f(t) + 5pU_t + 3U_{tt} = 0. (A4)$$

Условия (А3) относительно изображений примут вид:

$$U(p,0) = G(p), \quad U_t(p,0) = 0.$$
 (A5)

К задаче (A4)—(A5) применим преобразование Лапласа по переменной t. Пусть V(p,q) — изображение функции $U(p,t),\ F(q)$ — изображение функции f(t). Так как

$$U_t \leftrightarrow qV - G(p), \quad U_{tt} \leftrightarrow q^2V - qG(p),$$

то, применив преобразование Лапласа к уравнению (А4), получим:

$$(2p^2 + 5pq + 3q^2)V(p,q) = 2F(q) + 5pG(p) + 3qG(p).$$
 (A6)

Отсюда получаем

$$V(p,q) = \frac{2F(q) + 5pG(p) + 3qG(p)}{2p^2 + 5pq + 3q^2}.$$
 (A7)

Так как

$$(2p^2 + 5pq + 3q^2) = (p+q)(2p+3q)$$

И

$$2F(q) + 5pG(p) + 3qG(p) = 2F(q) + 3pG(p) + (2p + 3q)G(p),$$

то выражение (А7) можно преобразовать следующим образом:

$$V(p,q) = \frac{2F(q) + 3pG(p)}{(p+q)(2p+3q)} + \frac{G(p)}{p+q}.$$
 (A8)

Так как

$$\begin{split} \frac{1}{(p+q)(2p+3q)} &= -\frac{1}{p(p+q)} + \frac{3}{p(3q+2p)} = \\ &= \frac{1}{q} \left(\frac{1}{p+q} - \frac{2}{2p+3q} \right), \end{split}$$

то выражение (А8) примет вид:

$$V(p,q) = \frac{2F(q)}{q} \left(\frac{1}{p+q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{p+q} + \frac{9G(p)}{3q+2p} + \frac{G(p)}{p+q} = \frac{1}{q} \left(\frac{1}{q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{3q+2p} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{q} - \frac{2}{q} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{q} - \frac{2}{q} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{q} - \frac{2}{q} - \frac{2}{q} \right) - \frac{3G(p)}{q} + \frac{1}{q} \left(\frac{1}{q} - \frac{2}{q} - \frac{2}{q}$$

$$=\frac{2F(q)}{q}\frac{1}{p+q}-\frac{2F(q)}{q}\frac{1}{p+\frac{3}{2}q}-\frac{2G(p)}{p+q}+\frac{3G(p)}{q+\frac{2}{3}p}.$$

Выполним обратные преобразования Лапласа:

$$\begin{array}{cccc} \frac{G(p)}{p+q} & \stackrel{t}{\leftrightarrow} & G(p)e^{-pt} \stackrel{x}{\leftrightarrow} g(x-t)\chi(x-t), \\ \\ \frac{G(p)}{q+\frac{3}{2}p} & \stackrel{t}{\leftrightarrow} & G(p)e^{-\frac{2}{3}pt} \stackrel{x}{\leftrightarrow} g(x-\frac{2}{3}t)\chi(x-\frac{2}{3}t), \\ \\ \frac{F(q)}{q} \frac{1}{p+q} & \stackrel{x}{\leftrightarrow} & \frac{F(q)}{q}e^{-qx} \stackrel{t}{\leftrightarrow} \int_{0}^{t-x} f(t-x-\xi)d\xi \cdot \chi(t-x), \\ \\ \frac{F(q)}{q} \frac{1}{p+\frac{3}{7}q} & \stackrel{x}{\leftrightarrow} & \frac{F(q)}{q}e^{-\frac{3}{2}qx} \stackrel{t}{\leftrightarrow} \int_{0}^{t-\frac{3}{2}x} f(t-\frac{3}{2}x-\xi)d\xi \cdot \chi(t-\frac{3}{2}x) \end{array}$$

и построим искомый оригинал в виде:

$$u(x,t) = -2g(x-t)\chi(x-t) + 3g(x-\frac{2}{3}t)\chi(x-\frac{2}{3}t) + 2\int_0^{t-x} f(t-x-\xi) d\xi \cdot \chi(t-x) - 2\int_0^{t-\frac{3}{2}x} f(t-\frac{3}{2}x-\xi) d\xi \cdot \chi(t-\frac{3}{2}x).$$

Преобразуем полученное выражение, опираясь на определение функции Хевисайда $\chi(x)$. Получим:

$$u(x,t) = \left\{ \begin{array}{l} 3g\left(x-\frac{2}{3}t\right) - 2g(x-t), \ x > t, \\ \\ 3g\left(x-\frac{2}{3}t\right) + 2\int_0^{t-x} f(t-x-\xi)d\xi, \ \frac{2}{3}t < x < t, \\ \\ 2\int_0^{t-x} f(t-x-\xi)d\xi - 2\int_0^{t-\frac{3}{2}x} f\left(t-\frac{3}{2}x-\xi\right)d\xi, \ x < \frac{2}{3}t. \end{array} \right.$$

◁

Упражнения

- **67.** С помощью интегрального преобразования Фурье решите следующие краевые задачи в указанных областях:
 - а) в полуплоскости $-\infty < x < \infty, t > 0$:
 - 1) $u_{tt} = a^2 \cdot u_{xx}$, $u(x,0) = \phi(x)$, $u_t(x,0) = \mu(x)$;
 - 2) $u_{tt} = a^2 \cdot u_{xx} + f(x,t), \quad u(x,0) = u_t(x,0) = 0;$

- 3) $u_t = a^2 \cdot u_{xx}$, $u(x,0) = \phi(x)$;
- б) в четвертыплоскости $0 < x < \infty, t > 0$:
 - 1) $u_t = a^2 \cdot u_{xx}$, $u(0,t) = \mu(t)$, u(x,0) = 0;
 - 2) $u_t = a^2 \cdot u_{xx}$, $u_x(0,t) = \mu(t)$, u(x,0) = 0;
 - 3) $u_t = a^2 \cdot u_{xx} + f(x,t), \quad u(0,t) = u(x,0) = 0;$
- в) в полупространстве $-\infty < x, y < \infty, t > 0$:
 - 1) $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u(x, y, 0) = \phi(x, y);$
 - 2) $u_t = a^2 \cdot (u_{xx} + u_{yy}) + f(x, y, t), \quad u(x, y, 0) = 0;$
- г) в части пространства $-\infty < x < \infty, 0 < y < \infty, t > 0$:
 - 1) $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u(x, 0, t) = 0, u(x, y, 0) = f(x, y);$
 - 2) $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u(x, 0, t) = f(x, t), u(x, y, 0) = 0;$
 - 3) $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u_y(x, 0, t) = 0, u(x, y, 0) = f(x, y);$
 - 4) $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u_y(x, 0, t) = f(x, t), u(x, y, 0) = 0;$
- д) в части пространства $0 < x, y, t < \infty$: $u_t = a^2 \cdot (u_{xx} + u_{yy}), \quad u_x(0, y, t) = f(y, t), \ u(x, 0, t) = g(x, t),$ u(x, y, 0) = 0.
- **68.** С помощью интегрального преобразования Лапласа решите следующие краевые задачи:
 - 1) $u_y = u_{xx} + a^2 \cdot u + f(x)$, $u(0,y) = u_x(0,y) = 0$, $0 < x, y < \infty$;
 - 2) $u_{xx} u_y + u = x$, $0 < x, y < \infty$, u(0, y) = y, $u_x(0, y) = 0$;
 - 3) $u_{xx} u_t + u = f(x)$, u(0,t) = t, $u_x(0,t) = 0$, $0 < x, t < \infty$;
 - 4) $u_{xx} + u_{xt} = 0$, $0 < x, t < \infty$, $u(0,t) = \mu(t)$, $u_x(0,t) = 0$, $u(x,0) = \phi(x)$, $\mu(0) = \phi(0) = 0$;
 - 5) $u_{xx} + 2u_{xy} + u_{yy} = f(x, y), \quad 0 < x, y < \infty,$ $u(0, y) = \psi_0(y), \ u_x(0, y) = \psi_1(y), \ u(x, 0) = \varphi_0(x),$ $u_y(x, 0) = \varphi_1(x), \ \varphi_0(0) = \psi_0(0);$
 - 6) $u_{xx} u_t = 0$, $0 < x, t < \infty$, u(x, 0) = A, u(0, t) = B, A, B - const,

u(x,t) ограничена при $x \to +\infty$;

- 7) $u_{xx} + 2 \cdot u_{xy} + u_{yy} + u = f(x, y), \quad 0 < x, y < \infty,$ $u(0, y) = \mu(y), \ u_x(0, y) = u(x, 0) = 0, \ u_y(x, 0) = \phi(x);$
- 8) $u_{tt} = u_{xx}$, 0 < x < 1, t > 0, $u(x,0) = u_t(x,0) = 0$, u(0,t) = 0, $u_x(1,t) = \sin \omega t$, $|\omega| \neq (k - \frac{1}{2})\pi, \forall k = 1, 2, ...$
- **69.** С помощью преобразования Лапласа решите следующую краевую задачу. Найти распределение температуры u(x,t) в полубесконечном стержне $(0 \le x < \infty)$, если на его левом конце поддерживается заданная температура q(t), а начальная температура стержня равна нулю.
- 70. С помощью преобразования Лапласа решите краевую задачу для уравнения диффузии в непроницаемой трубке. В полубесконечной непроницаемой трубке, конец которой x=0 закрыт непроницаемой перегородкой, в точке x=l находится непроницаемая перегородка. Участок трубки (0;l), имеющий среду с коэффициентом диффузии $D_1=a^{-2}$, заполнен веществом с постоянной концентрацией u_o . В части трубки $(l;\infty)$, имеющей среду с коэффициентом диффузии $D_2=b^{-2}$, диффундирующее вещество отсутствует. В момент времени t=0 непроницаемая перегородка при x=l убирается и начинается процесс диффузии. Определите концентрацию вещества u(x,t) в момент времени t в точке x.

§6. Задача Коши для уравнения параболического типа. Формула Пуассона

Задача Коши: Найти решение уравнения

$$u_t = a^2 \Delta u + f(x, t), \quad x \in \mathbb{R}^n, \ t > 0,$$
 (6.1)

удовлетворяющее начальному условию

$$u(x,0) = \phi(x). \tag{6.2}$$

Решение задачи имеет следующий вид

$$u(x,t) = \int_{\mathbb{R}^n} G(x,\xi,t)\phi(\xi) \,d\xi + \int_0^t \int_{\mathbb{R}^n} G(x,\xi,t-\tau)f(\xi,\tau) \,d\xi \,d\tau, \quad (6.3)$$

где

$$G(x,\xi,t) = \frac{1}{(2a\sqrt{\pi t})^n} \cdot e^{-\frac{|x-\xi|^2}{4a^2t}}$$
 (6.4)

функция Грина, которая описывает влияние мгновенного точечного источника,

$$|x - \xi|^2 = \sum_{i=1}^n (x_i - \xi_i)^2, \quad x = (x_1, \dots, x_n), \quad \xi = (\xi_1, \dots, \xi_n).$$

Формулу (6.3) называют формулой Пуассона. При n=1 формула (6.3) принимает вид

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \phi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi + \int_0^t \int_{-\infty}^{+\infty} \frac{1}{2a\sqrt{\pi(t-\tau)}} f(\xi,\tau) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi d\tau$$

и дает решение задачи, например, о распространении тепла в неограниченном стержне.

В ряде случаев решение краевой задачи, построенное с помощью формулы Пуассона, можно преобразовать к виду, содержащему специальную функцию — $uhmerpan\ omu bow$:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\gamma^2} d\gamma$$

и воспользоваться ее свойствами

$$erf(-x) = erf(x), \quad erf(\infty) = 1.$$

Пример 1. Найти решение задачи Коши:

$$u_t = 4u_{xx} + 8u_x + 3u + e^{-x}(1 + te^{-t}), \quad |x| < +\infty, \ t > 0,$$
 (A1)

$$u(x,0) = 2e^{-x}, \quad |x| < +\infty.$$
 (A2)

Решение.⊳ Нетрудно показать, что с помощью преобразования вида:

$$u(x,t) = e^{-(x+t)}v(x,t) \tag{A3}$$

исходная задача (A1)-(A2) сводится к задаче относительно новой неизвестной функции v(x,t) :

$$v_t = 4v_{xx} + t + e^t, \quad |x| < +\infty, \ t > 0,$$
 (A4)

$$v(x,0) = 2, \quad |x| < +\infty. \tag{A5}$$

Для ее решения воспользуемся формулой Пуассона, будем иметь

$$v(x,t) = \frac{1}{4\sqrt{\pi t}} \int_{-\infty}^{+\infty} 2 \cdot e^{-\frac{(x-\xi)^2}{16t}} \, d\xi + \frac{1}{\sqrt{4\pi}} \int_{0}^{t} \int_{-\infty}^{+\infty} \frac{\tau + e^{\tau}}{\sqrt{t-\tau}} e^{-\frac{(x-\xi)^2}{16(t-\tau)}} \, d\xi \, d\tau.$$

Так как

$$\int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{16t}} d\xi = 4\sqrt{\pi t}, \quad \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{16(t-\tau)}} d\xi = 4\sqrt{\pi (t-\tau)},$$
$$\int_{-\infty}^{t} (\tau + e^{\tau}) d\tau = \frac{1}{2} t^2 + e^t - 1,$$

то получим

$$v(x,t) = 1 + \frac{1}{2}t^2 + e^t.$$

Следовательно, согласно (АЗ), установим решение задачи (А1)-(А2):

$$u(x,t) = e^{-(x+t)}(1 + \frac{1}{2}t^2 + e^t). \triangleleft$$

Упражнения

71. При n=1 установите справедливость следующих свойств функции Грина (6.4):

$$G(-x,\xi,t) = G(x,\xi,t), \quad \frac{\partial^k G}{\partial x^k} = (-1)^k \frac{\partial^k G}{\partial \xi^k}, \ k = 0, 1, 2, \dots$$

Для произвольного фиксированного значения ξ и моментов времени t_1,t_2 — $(t_1>t_2)$ постройте графики функции $G(x,\xi,t)$.

- **72.** Решить в области $-\infty < x < +\infty, t > 0$ следующие задачи Коши:
 - 1) $u_t = 4 \cdot u_{xx} + t + e^t$, u(x,0) = 2;
 - 2) $u_t = u_{xx} + \sin t$, $u(x,0) = e^{-x^2}$;
 - 3) $4 \cdot u_t = u_{xx}$, $u(x,0) = e^{2x-x^2}$.

73. Решить в области $-\infty < x,y < +\infty,t > 0$ следующую краевую задачу:

$$8 \cdot u_t = u_{xx} + u_{yy} + 1, \quad u(x,0) = e^{-(x-y)^2}.$$

74. Для решения u = u(x,t) задачи Коши:

$$u_t = a^2 \cdot u_{xx}, \quad -\infty < x < \infty, t > 0, \quad u(x, 0) = g(x)$$

доказать, что:

- а) если g(x) нечетная функция, то u(0,t)=0;
- б) если g(x) четная функция, то $u_x(0,t) = 0$.
- 75. Дан однородный стержень, у которого один конец простирается до бесконечности в положительном направлении оси Ox, а другой поддерживается при постоянной температуре, равной нулю. Известно начальное распределение температуры в стержне. Определите температуру стержня в любой момент времени t>0.
- 76. Дан полуограниченный стержень с теплоизолированной боковой поверхностью, начальная температура которого известна. На конце происходит лучеиспускание в окружающую среду с температурой, равной нулю. Найти распределение температуры по длине стержня в любой момент времени t>0.
- 77. Даны два полуограниченных стержня. Начальная температура первого постоянная и равна нулю, второго $u_0 = const$. В начальный момент времени они приведены в соприкосновение своими концами. Определите распределение температуры по длине обоих стержней в любой момент времени t.

Ответы и указания

Глава І

§1

1. Функции в примерах 1), 2), 4) и 6) являются оригиналами.

2. 1)
$$\frac{1}{p^2}$$
; 2) $\frac{3}{p^2+9}$; 3) $\frac{1}{(p-1)^2}$.

3. A.1)
$$\frac{p+1}{p^2}$$
; A.2) $\frac{2-p}{p^2+1}$; A.3) $\frac{p^2+2p+2}{2p^2(p+1)}$; A.4) $\frac{4}{p^2+16}$;

A.5)
$$\frac{3}{p^2-9}$$
; A.6) $\frac{2}{p(p^2+4)}$; A.7) $\frac{2mnp}{(p^2+m^2+n^2)^2-4m^2n^2}$;

A.8)
$$\frac{p^3+7p}{(p^2+9)(p^2+1)}$$
;

B.1)
$$\frac{p^2+2}{p(p^2+4)}$$
; B.2) $\frac{6}{(p^2+9)(p^2+1)}$; B.3) $\frac{p^2-b^2}{(p^2+b^2)^2}$; B.4) $\frac{1}{(p-1)^2}$;

B.1)
$$\frac{2p^3-6p}{(p^2+1)^3}$$
; B.2) $\frac{2(p^2+p+1)}{(p^2-1)^2}$;

$$\Gamma.1) \ \frac{1}{p(p^2+1)}; \quad \Gamma.2) \ \frac{p^3+p^2+p\omega^2-\omega^2}{p(p^2+\omega^2)^2}; \quad \Gamma.3) \ \frac{2}{p(p+1)^3};$$

Д.1)
$$\ln \frac{p}{p-1}$$
; Д.2) $\frac{1}{2} \ln \frac{\sqrt{p^2+4}}{p}$; Д.3) $\frac{1}{2} \ln \frac{p^2+4}{p^2+1}$; Д.4) $\frac{1}{p} - \ln \frac{p-1}{p}$;

E.1)
$$\frac{1}{(p-2)^2+1}$$
; E.2) $\frac{1}{2(p+\alpha)} + \frac{p+\alpha}{2((p+\alpha)^2+4\beta^2)}$;

Ж.1)
$$\frac{e^{-bp}}{p^2+1}$$
; Ж.2) $\left(\frac{1}{2p} + \frac{p}{2(p^2+4)}\right)e^{-bp}$;

$$3.1) \ \tfrac{1}{p^2(p-1)}; \quad 3.2) \ \tfrac{1}{(p-1)(p^2+1)}; \quad 3.3) \ \tfrac{2}{p^2(p^2-1)}; \quad 3.4) \ \tfrac{2}{p^3(p+2)}.$$

5.
$$f_1(t) = \frac{t-a}{a}(\chi(t) - \chi(t-a)) + \frac{t-2a}{a}\chi(t-2a);$$

$$F(p) = \frac{1}{ap^2} - \frac{1}{p} - \frac{1}{ap^2}(e^{-ap} - e^{-2ap});$$

$$f_2(t) = \chi(t) - \chi(t-a) + \frac{t-2a}{a}\chi(t-2a) - 2\frac{t-3a}{a}\chi(t-3a) + \frac{t-4a}{a}\chi(t-4a);$$

$$F_2(p) = \frac{1}{p}(1 - e^{-ap}) + \frac{1}{ap^2}(e^{-2ap} - 2e^{-3ap} + e^{-4ap}).$$

6. a)
$$\frac{1 - e^{-p}}{p^2 (1 + e^{-p})}$$
; 6) $\frac{1}{1 + p^2} \cdot \frac{1 + e^{-\pi p}}{1 - e^{-\pi p}}$.

$\S 2$

8. 1)
$$-\frac{1}{4} + \frac{1}{5}e^t + \frac{1}{20}\cos 2t - \frac{1}{10}\sin 2t$$
; 2) $\frac{1}{2}(t\cos t - \sin t)$; 3) $e^{-2t}\sin t$;

4)
$$\frac{t^2}{2} + 2e^{-t}\sin t$$
; 5) $2e^t - e^{\frac{1}{2}t}\cos\frac{\sqrt{3}t}{2} + \frac{5}{\sqrt{3}}e^{\frac{1}{2}t}\sin\frac{\sqrt{3}t}{2}$;

6)
$$\left(\frac{1}{4} - \frac{1}{5}e^{-t + \frac{1}{2}} - \frac{1}{20}\cos(2t - 1) - \frac{1}{10}\sin(2t - 1)\right)\chi(t - \frac{1}{2});$$

7)
$$\frac{1}{2}e^{t-1}\sin 2(t-1)\chi(t-1) + \cos 3(t-2)\chi(t-2);$$

8)
$$\sin(t-2)\chi(t-2) + 2\sin(t-3)\chi(t-3) + 3\sin(t-4)\chi(t-4)$$
;

9)
$$(1 + e^{-t}) \sin t \chi(t) + e^{t-1} \sin (t-1) \chi(t-1);$$

10)
$$\sum_{k=1}^{n} \frac{1}{(k-1)!} (t-k)^{k-1} \chi(t-k)$$
.

10.
$$\frac{F(p)G(p)}{p} \leftrightarrow \int_0^t g(t-\tau) \int_0^\tau f(\eta) \, d\eta \, d\tau$$
.

11. 1)
$$\sum_{k=0}^{\infty} \frac{(t-k)^k}{k!} \chi(t-k);$$
 2) $\sum_{k=0}^{\infty} \frac{(t-k)^{k+1}}{(k+1)!} \chi(t-k).$

$\S 3$

12. 1)
$$x(t) = \frac{3}{4}e^{-3t} + \frac{1}{4}e^{t}$$
; 2) $x(t) = -\frac{2}{3} + \frac{2}{3}e^{3t} + e^{-2t}$;

3)
$$x(t) = \frac{1}{8}(3e^t - e^{-3t} - 2e^{-t});$$

4)
$$x(t) = \frac{2}{25}e^{-2t} - \frac{2}{25}\cos t + \frac{14}{25}\sin t - \frac{1}{5}t\sin t - \frac{2}{5}t\cos t;$$

5)
$$x(t) = \frac{2}{9} \left(e^t - (3t+1)e^{-2t} \right)$$
;

6)
$$x(t) = 2t + \frac{1}{2}(e^{-t} + \cos t - \sin t);$$

7)
$$x(t) = \frac{1}{6}t^2 - \frac{4}{9}t + \frac{35}{54} - e^{-t} + \frac{1}{2}e^{-2t} - \frac{4}{27}e^{-3t};$$

8)
$$x(t) = t^2 + 2t$$
; 9) $x(t) = (t^2 - 4t + 2)e^{1-t}$.

13. 1)
$$x(t) = e^t$$
, $y(t) = -e^t$. 2) $x(t) = e^{-6t} \cos t$, $y(t) = e^{-6t} (\cos t - \sin t)$.

3)
$$x(t) = 2(1 - e^{-t} - te^{-t}), \ y(t) = 2 - t - 2e^{-t} - 2te^{-t}.$$

4)
$$x(t) = \frac{1}{4}(e^t - e^{3t} + 2te^{3t}), \ y(t) = \frac{1}{4}(5e^t - e^{3t} - 2te^{3t}).$$

5)
$$x(t) = \frac{1}{3}(e^t + 2\cos 2t + \sin 2t), \ y(t) = \frac{2}{3}(e^t - \cos 2t - \frac{1}{2}\sin 2t).$$

6)
$$x(t) = e^t - \frac{11}{34}e^{4t} - \frac{3}{17}\cos t + \frac{5}{17}\sin t - \frac{1}{2},$$

 $y(t) = -\frac{2}{3}e^t + \frac{22}{51}e^{4t} + \frac{4}{17}\cos t - \frac{1}{17}\sin t.$

7)
$$x(t) = -\frac{1}{15}e^{-2t} + \frac{13}{12}e^{-t} - 2 + \frac{1}{6}e^{t} + \frac{2}{3}e^{2t} + \frac{3}{20}e^{3t},$$

 $y(t) = \frac{1}{15}e^{-2t} + \frac{13}{12}e^{-t} - 2 - \frac{1}{6}e^{t} + \frac{2}{3}e^{2t} + \frac{7}{20}e^{3t},$

$$z(t) = -\frac{13}{12}e^{-t} - \frac{1}{2}e^{t} + \frac{4}{3}e^{2t} + \frac{1}{4}e^{3t}.$$

8)
$$x(t) = \frac{2}{5}(e^{3t} - e^{-2t}), \quad y(t) = \frac{1}{5}(3e^{3t} + 2e^{-2t}), \quad z(t) = \frac{1}{5}(3e^{3t} + 2e^{-2t}).$$

9)
$$x(t) = \frac{3}{4}(1-t) - \frac{3}{4}\cos 2t + \frac{3}{8}\sin 2t$$
,
 $y(t) = \frac{3}{4}(1-t) + \frac{1}{4}\cos 2t - \frac{1}{8}\sin 2t - \cos t$, $z(t) = \cos t$.

14. 1)
$$x(t) = 2 \left[\sin^2 \frac{t}{2} \chi(t) - 2 \sin^2 \frac{t-1}{2} \chi(t-1) + \sin^2 \frac{t-2}{2} \chi(t-2) \right]$$
.

2)
$$x(t) = \frac{1}{3}\sin 3t\chi(t) + \frac{1}{9}(t-1-\frac{1}{3}\sin 3(t-1))\chi(t-1) - \frac{2}{9}(t-2-\frac{1}{3}\sin 3(t-2))\chi(t-2) + \frac{1}{9}(t-3-\frac{1}{3}\sin 3(t-3))\chi(t-3).$$

15. 1)
$$x(t) = (t-1)^2 + e^{1-t}$$
; 2) $x(t) = (1-t)\cos t - \frac{\pi}{2}\sin t$;

3)
$$x(t) = (\frac{t^2}{2} - t + 1)e^t$$
; 4) $x(t) = \frac{1}{4}(t^2 \sin t + t \cos t - \sin t)$.

16. 1)
$$x(t) = x(0) + c_1 \frac{t^3}{2!}$$
; 2) $x(t) = (c_1 + c_2 t^2)e^{-t}$;

3)
$$x(t) = c_1$$
; 4) $x(t) = e^{-t}$; 5) $x(t) \equiv -1$; 6) $x(t) = e^{t}$.

17.
$$x(t) = \frac{2}{3}t + \frac{1}{3}$$
, $y(t) = \frac{5}{4}t^2 - \frac{1}{4}$, $z(t) = \frac{5}{4}t^2 - \frac{2}{3}t + \frac{5}{12}$.

18. 1)
$$x(t) = \frac{1}{2}(e^t - te^t - 1) + \operatorname{sh} t \cdot \ln \frac{1 + e^t}{2}$$
;

2)
$$x(t) = \frac{1}{2}(e^t - 1) - \ln \frac{1 + e^t}{2}$$
;

3)
$$x(t) = e^{-t}[(t+1)\ln(t+1) - t];$$

4)
$$x(t) = (e^t + 2) \ln \frac{e^t + 2}{3} - e^t + 1;$$

5)
$$x(t) = e^t - 1 - (t + \ln 2)(e^t + 1) + (e^t + 1)\ln(e^t + 1);$$

6)
$$x(t) = \sin t \left(t - \frac{4}{\sqrt{3}} \arctan \left(\frac{1}{\sqrt{3}} \operatorname{tg} \frac{t}{2} \right) \right) + \cos t \cdot (\ln (2 + \cos t) - \ln 3).$$

§4

19.
$$x(t) = \sum_{k=0}^{\infty} \frac{(t-k)^{k+1}}{(k+1)!} \chi(t-k).$$
 20. $x(t) = \sum_{k=0}^{\infty} \frac{(t-k)^{2k+3}}{(2k+3)!} \chi(t-k).$

21.
$$x(t) = \sum_{k=0}^{\infty} (-1)^k \frac{(t-2k)^{k+3}(k+1)}{(k+3)!} \chi(t-2k).$$

22.
$$x(t) = (-t + \frac{1}{2}t^2)\chi(t) + \sum_{k=2}^{\infty} \frac{(t-k+2)^{k-1}}{k!}(t-3k+2)\chi(t-k+2).$$

23.
$$x(t) = \cos t$$
.

24. 1)
$$y(x) = \frac{1}{5}(13\sin 2x - 16\sin x);$$
 2) $y(x) = \frac{1}{2}(\cos x + \cot x);$

3)
$$y(x) = \frac{1}{3}(e^x - e^{-x/2} \cdot \cos \frac{\sqrt{3}x}{2} + \sqrt{3}e^{-x/2} \sin \frac{\sqrt{3}x}{2});$$

4)
$$y(x) = x + \frac{1}{6}x^3$$
; 5) $y(x) = \frac{2}{5}e^{2x} + \frac{3}{5}\cos x + \frac{1}{5}\sin x$;

6)
$$y(x) = 2 + x - e^{x/2} \left(\cos\frac{\sqrt{3}x}{2} - \sqrt{3}\sin\frac{\sqrt{3}x}{2}\right);$$

7)
$$y(x) = \frac{1}{2}e^{-x} + \frac{1}{6}e^x + \frac{1}{3}e^{-x/2}(\cos\frac{\sqrt{3}x}{2} - \sqrt{3}\sin\frac{\sqrt{3}x}{2});$$

8)
$$y(x) = \frac{1}{3}(e^x - e^{-x} + \frac{\sqrt{2}}{2}\sin\sqrt{2}x);$$
 9) $y(x) = e^x;$

10)
$$y(x) = \frac{1}{2}(\operatorname{ch} x + \cos x);$$

11)
$$y(x) = \frac{1}{2} + \frac{3}{2}\cos 2x$$
.

25. 1)
$$y_1(x) = e^{-x}(1-x)$$
, $y_2(x) = \frac{8}{9}e^{2x} + \frac{1}{3}xe^{-x} - \frac{8}{9}e^{-x}$;

2)
$$y_1(x) = f(x) + \int_0^x (x - t)f(t) dt + \int_0^x g(x - t)(1 + \frac{t^2}{2})^2 dt$$
,
 $y_2(x) = g(x) + \int_0^x (x - t)g(t) dt + \int_0^x f(t) dt$;

3)
$$y_1(x) = 2(1-x)e^{-x}$$
, $y_2(x) = (1-x)e^{-x}$.

26. 1)
$$y(x) = \frac{1}{2}x\sin x$$
; 2) $y(x) = 2x \sin x + 3 \cot x + \cos \sqrt{3}x$;

3)
$$y(x) = 1 - \cos x$$
; 4) $y(x) = 1 - x + 2(\sin x - \cos x)$.

Глава II

$\S 1$

- **1.** Уравнение в задании 2) является уравнением с частными производными.
- **2.** 1) второй; 2) первый; 3) первый.
- 3. 1) Нелинейное. 2) Квазилинейное. 3) Линейное, неоднородное.
 - 4) Линейное, однородное. 5) Линейное, неоднородное. 6) Нелинейное. 7) Квазилинейное. 8) Квазилинейное. 9) Квазилинейное.
 - 10) Квазилинейное. 11) Линейное, однородное.

4.
$$u_x = \frac{y(x^4 - y^4 + 4x^2y^2)}{(x^2 + y^2)^2}$$
.

5.
$$u_{xx} = y(y-1)x^{y-2}$$
, $u_{yy} = x^y(\ln x)^2$, $u_{xy} = x^{y-1}(1+y\ln x)$.

- **6.** C, C_1, C_2 произвольные функции
 - 1) u(x, y) = C(y).
 - 2) u(x,y) = xf(y) + C(y); $u(x,y) = x \ln y + C(y).$
 - 3) $u(x,y) = \int f(x) dx + C(y)$, $u(x,y) = \ln|x| + C(y)$.
 - 4) $u(x,y) = \int f(x,y) dx + C(y),$ $u(x,y) = \frac{1}{y} \sin xy + C(y).$
 - 5) $u(x, y) = xC_1(y) + C_2(y)$.
 - 6) $u(x,y) = \int \int f(x) dx dx + xC_1(y) + C_2(y)$.
 - 7) $u(x,y) = \frac{1}{2}x^2f(y) + xC_1(y) + C_2(y)$.
 - 8) $u(x,y) = \int \left(\int f(x,y) \, dx \right) dx + xC_1(y) + C_2(y),$ $u(x,y) = -\frac{x}{y^2} \sin(xy) - \frac{2}{y^3} \cos(xy) + xC_1(y) + C_2(y).$
 - 9) $u(x,y) = C_1(x) + C_2(y)$.
 - 10) $u(x,y) = y \int f(x) dx + C_1(y) + C_2(x),$ $u(x,y) = y(\frac{1}{2}x + \frac{1}{16}\sin 8x) + C_1(y) + C_2(x).$
 - 11) $u(x,y) = x \int f(y) dy + C_1(x) + C_2(y),$ $u(x,y) = x \sin \frac{y}{2} - \frac{x}{3} \sin \frac{3y}{2} + xy \cos y - x \sin y + C_1(x) + C_2(y).$
 - 12) $u(x,y) = \int \int f(x,y) dx dy + C_1(y) + C_2(x),$ $u(x,y) = \frac{yx^2}{2} + x \ln y + C_1(y) + C_2(x).$
- **7.** ϕ, ψ произвольные функции.
 - 1) $u(x,y) = \frac{1}{2}\phi(y) + \psi(x)$. 2) $u(x,y) = e^{-x}\psi(y) + \phi(x)$.
 - 3) $u(x,y) = \frac{x^2y^2}{10} \frac{x^2y}{25} + \frac{x^2}{125} + \phi(x)e^{-5y} + \psi(y)$.
 - 4) $u(x, y) = yx + \psi(y) \ln x + \phi(y)$.
 - 5) $u(x,y) = e^{-\frac{1}{6}y}\phi(x) + \psi(y)$. 6) $u(x,y) = \phi(y)\ln x + \psi(y)$.
 - 7) $u(x,y) = \phi(x) \ln y + \psi(x)$. 8) $u(x,y) = \sqrt{x}\psi(y) + \phi(x)$.
- **8.** φ, ψ произвольные функции.
 - 1) $u(x,y) = \int_0^x e^{-\alpha(y)(x-\xi)} f(\xi,y) d\xi + \varphi(y) e^{-\alpha(y)x};$

2)
$$u(x,y) = \varphi(x)e^{-\int\limits_0^y \alpha(x,\eta)\,d\eta} + \int\limits_0^y f(x,\gamma)e^{-\int\limits_\gamma^y \alpha(x,\eta)\,d\eta}\,d\gamma;$$

3)
$$u(x,y) = \int_0^y (y-\eta)\psi(\eta)e^{-x\eta} d\eta + y\varphi(x) + \varphi'(x);$$

4)
$$u(x,y) = \frac{1}{\operatorname{ch} x} \cdot \left(y\varphi(x) + \varphi'(x) + \int_0^y (y-\eta)\psi(\eta)e^{-x\eta} \,d\eta \right);$$

5)
$$u(x,y) = e^{-x} \left\{ \psi(y) + \int_0^x e^{-\xi^2 y^2 + \xi} \varphi(\xi) \, d\xi \right\}.$$

9.
$$u(x,y) = \int_0^x \int_0^\xi f(\gamma,y) \, d\gamma \, d\xi - \frac{x}{y} \int_0^y \int_0^\xi f(\gamma,y) \, d\gamma \, d\xi + \frac{x}{y} (y - \sin y) + \sin y.$$

§3

- 10. Является решением.
- **13.** 1) $v_{\xi} + v_{\eta} = e^{\xi} \sinh \eta$; 2) $v_{\xi} v_{\eta} = 0$; 3) $v_{\eta} = \frac{1}{2}$.
- **14.** 1) $u(x,y) = \Phi(x^2 + y^2);$ 2) $u(x,y) = \Phi(\frac{x}{y}) + \ln y;$
 - 3) $u(x,y) = xy + \Phi(x^2 + y^2)$;
 - 4) $u(x,y) = \sin y \cdot f(y \sin x), \quad f \in C^1$;
 - 5) $u(x,y) = xy + f(x^2 y^2);$
 - 6) $u(x,y) = xf(2x y^2 4u);$ 7) $u(x,y) = yf(x^2 y^2).$
- **15.** 1) $u(x, y, z) = \Phi(\frac{y}{x}, \frac{z}{x});$

2)
$$u(x,y,z) = \frac{x^4}{4} - \frac{2x-y-z}{3}x^3 + \frac{(x-y)(x-z)x^2}{2} + f(x-y,x-z), \quad f \in C^1;$$

3)
$$u(x,y,z) = e^{-1/x} f(\frac{1}{x} - \frac{1}{y}, \frac{1}{x} - \frac{1}{z}), \quad f \in C^1;$$

4)
$$u(x,y,z) = \frac{x^4}{6} - \frac{x^3}{6}(2z+y) + \frac{x^2yz}{2} + f(y-2x,z-x).$$

- **17.** 1) $u = \frac{x}{y} + \ln y;$ 2) $u = \frac{1}{x^2 + y^2} + xy;$
 - 3) $u=xy+f(\frac{y}{x}), \;\;$ где f произвольная дифференцируемая функция такая, что f(1)=0;

4)
$$u(x,y) = \sqrt{2-xy}$$
, $xy < 2$; 5) $u(x,y) = xy - 1 + \frac{1}{x^2+y^2}$;

6)
$$u(x,y) = 1 + \frac{y^2}{3x}$$
; 7) $u(x,y) = \frac{(2x+y)^2}{2y} - xy$;

- **18.** 1) $u(x,y,z) = \frac{y^2+z^2}{x^2}$;
 - 2) $u(x, y, z) = y z + \frac{x^4}{4} + \frac{x^3}{3}(y + z 2x) + (y x)(z x)\frac{x^2}{2}$;
 - 3) u(x,y,z) = (1+x-y)(2-2y+z); 4) $u = x^4 f(\frac{x^2}{y^2}, \frac{x^3}{z}), u = \frac{yz}{x}.$
- **19.** $u = x 2y x^2 y^2$ параболоид вращения, осью которого является прямая $\left\{ \begin{array}{l} x = 1/2, \\ y = -1. \end{array} \right.$
- **20.** $2x^2 + z^2 = z(x^2 + y^2 + z^2)$.
- $\mathbf{21.} \ \ 1) \ u(x,y) = \left\{ \begin{array}{ll} e^{-\frac{cx}{a}} \psi(y \frac{b}{a}x) + \frac{1}{a} \int_0^x e^{-\frac{c}{a}t} f(x t, y \frac{b}{a}t) \, dt, & ay > bx, \\ e^{-\frac{ct}{b}} \phi(x \frac{a}{b}y) + \frac{1}{b} \int_0^y e^{-\frac{c}{b}t} f(x \frac{a}{b}t, y t) \, dt, & ay < bx; \end{array} \right.$
 - 2) $u(x,y) = y^3 y + xy^2$; 4) $u(x,y) = y + \sin x \sin y$.

§4

22. Гиперболический.
23 Эллиптический.
24. Параболический.
25. Параболический.
26. Гиперболический.
27. Эллиптический.
28. Гиперболический.

$$Q(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, \quad \overline{Q}(\mu_1, \mu_2, \mu_3) = \mu_1^2 - \mu_2^2 - \mu_3^2,$$

$$\begin{cases} \lambda_1 = \mu_1 + \mu_2 - \mu_3, \\ \lambda_2 = \mu_1 - \mu_2 - \mu_3, \\ \lambda_3 = \mu_3. \end{cases}$$

30. Эллиптический. 31. Гиперболический. 32. Эллиптический.

§5

- **33.** 1) $v_{\xi\eta} + \frac{1}{2}v_{\xi} + \frac{1}{2}v + \frac{\xi}{2} = 0$, $\xi = x$, $\eta = 2x + y$, $v(\xi, \eta) = e^{-\frac{1}{2}\eta}w(\xi, \eta)$, $w_{\xi\eta} + \frac{1}{2}w + \frac{\xi}{2}e^{\eta/2} = 0$;
 - 2) $v_{\eta\eta} + 18v_{\xi} + 9v_{\eta} 9v = 0$, $\xi = x + y, \eta = y$, $v = we^{\frac{13}{8}\xi \frac{9}{2}\eta}$, $w_{\eta\eta} + 18w_{\xi} = 0$;
 - 3) $v_{\xi\xi} + v_{\eta\eta} 2v_{\xi} + v_{\eta} v + \eta \xi = 0, \quad \xi = 2x y, \eta = 3x, v = e^{\xi \eta/2}w, \quad w_{\xi\xi} + w_{\eta\eta} \frac{9}{4}w + e^{-\xi + \eta/2}(\eta \xi) = 0.$
- **34.** 1) $v_{\xi\xi} + v_{\eta\eta} + \cos\eta \cdot v_{\xi} = 0$, $\xi = y \cos x$, $\eta = x$.
 - 2) $v_{\xi\eta} = 0$, $\xi = x + \operatorname{arctg} y$, $\eta = x \operatorname{arctg} y$.

- **35.** 1) Область параболичности точки кривой $x^2 y^2 = 1$, область гиперболичности $\{(x,y): 1+y^2-x^2>0\}$, область эллиптичности $\{(x,y): 1+y^2-x^2<0\}$.
 - 2) Область параболичности прямые $x=\frac{\pi}{2}+\pi k,\ k\in Z,\ y=\pi n,\ n\in Z;$ область гиперболичности полосы $\{(x,y):-\frac{\pi}{2}+2\pi k< x<\frac{\pi}{2}+2\pi k,\ k\in Z,\ y\in R\},$ исключая точки прямых $y=\pi m,\ m\in Z;$ область эллиптичности полосы $\{(x,y):\frac{\pi}{2}+2\pi k< x<\frac{3\pi}{2}+2\pi k,\ k\in Z,\ y\in R\},$ исключая точки прямых $y=\pi m,\ m\in Z.$
 - 3) Область параболичности окружности с центром в начале координат и радиусом $R_k = \sqrt{\frac{\pi(1+4k)}{2}}, \quad k=0,1,2,\ldots;$ область гиперболичности вся, плоскость, исключая точки окружностей $x^2+y^2=\frac{\pi}{2}+2\pi k, \ k=0,1,2,\ldots$
 - 4) Область параболичности совокупность кривых (парабол) $y=-x^2\pm\frac{\pi}{4}+2\pi k,\ k\in Z;$ область гиперболичности $\{(x,y):-x^2-\frac{7\pi}{4}-2\pi k< y<-x^2-\frac{\pi}{4}-2\pi k,\ k\in Z\};$ область эллиптичности $\{(x,y):-x^2-\frac{\pi}{4}-2\pi k< y<-x^2+\frac{\pi}{4}-2\pi k,\ k\in Z\}.$
- **36.** 1) Параболический тип $u_{yy}=0$ на прямой x=0. Гиперболический в полуплоскости x>0 :

$$v_{\xi\eta} + \frac{1}{2(\xi-\eta)}(v_{\xi} - v_{\eta}) = 0, \quad \begin{cases} \xi = y - x + 2\sqrt{x}, \\ \eta = y - x - 2\sqrt{x} \end{cases}$$

Эллиптический тип в полуплоскости x < 0:

$$v_{\xi\xi} + v_{\eta\eta} - \frac{1}{\eta}v_{\eta} = 0, \quad \left\{ \begin{array}{l} \xi = y - x, \\ \eta = 2\sqrt{-x} \end{array} \right.$$

2) Параболическое при $y=0,\quad u_{yy}=0;$ гиперболическое при y<0,

$$v_{\xi\eta} + \frac{1}{6(\xi+\eta)}(v_{\xi}+v_{\eta}), \quad \xi = \frac{2}{3}(-y)^{3/2} + x, \quad \eta = \frac{2}{3}(-y)^{3/2} - x;$$

эллиптическое при y > 0,

$$v_{\xi\xi} + v_{\eta\eta} + \frac{1}{3\xi}v_{\xi} = 0, \quad \xi = \frac{2}{3}y^{3/2}, \quad \eta = x.$$

3) Параболическое при $x=0,y\neq 0,\quad u_{yy}+\frac{2}{y}(u_x+u_y)=0$ и при $x\neq 0,y=0,\quad u_{xx}+\frac{2}{x}(u_x+u_y)=0.$ (В начале координат уравнение вырождается.)

Гиперболическое при x > 0, y < 0 и при x < 0, y > 0,

$$v_{\xi\eta} - \frac{3}{\xi^2 - \eta^2} (\eta v_{\xi} - \xi v_{\eta}) = 0.$$

Замена переменных

$$\xi = \sqrt{-y} + \sqrt{x}, \quad \eta = \sqrt{-y} - \sqrt{x}$$
 при $x > 0, y < 0,$
 $\xi = \sqrt{y} + \sqrt{-x}, \quad \eta = \sqrt{y} - \sqrt{-x}$ при $x < 0, y > 0.$

Эллиптическое при x > 0, y > 0 и при x < 0, y < 0,

$$v_{\xi\xi} + v_{\eta\eta} + 3(\frac{1}{\xi}v_{\xi} + \frac{1}{\eta}v_{\eta}) = 0.$$

Замена переменных

$$\xi = \sqrt{y}, \quad \eta = \sqrt{x}$$
 при $x > 0, y > 0,$
$$\xi = \sqrt{-y}, \quad \eta = \sqrt{-x}$$
 при $x < 0, y < 0.$

4) Параболическое на прямых $x=(2k+1)\frac{\pi}{2}, k=0,\pm 1,\pm 2,\dots$ Гиперболическое вне указанных прямых

$$v_{\xi\eta} + \frac{\xi - \eta}{2[4 - (\xi - \eta)^2]}(v_{\xi} - v_{\eta}) = 0,$$

$$\xi = y + \cos x + \sin x$$
, $\eta = y + \cos x - \sin x$.

5) Параболическое на осях координат x=0 и $y=0, \quad u_{xx}=0.$ Гиперболическое при x>0,y<0 и при x<0,y>0,

$$v_{\xi\eta} - \frac{1}{3(\xi^2 - \eta^2)} [(2\xi - \eta)v_{\xi} - (2\eta - \xi)v_{\eta}] = 0.$$

Замена переменных

$$\xi = -2(-y)^{1/2} + \frac{2}{3}x^{3/2}, \quad \eta = -2(-y)^{1/2} - \frac{2}{3}x^{3/2} \text{ при} \quad x > 0, y < 0,$$

$$\xi = 2y^{1/2} + \frac{2}{3}(-x)^{3/2}, \quad \eta = 2y^{1/2} - \frac{2}{3}(-x)^{3/2} \quad \text{при} \quad x < 0, y > 0.$$

Эллиптическое при x>0, y>0 и при x<0, y<0,

$$v_{\xi\xi} + v_{\eta\eta} - \frac{1}{\xi}v_{\xi} + \frac{1}{3\eta}v_{\eta} = 0.$$

Замена переменных

$$\xi = 2\sqrt{y}, \quad \eta = \frac{2}{3}x^{3/2}$$
 при $x > 0, y > 0,$
$$\xi = 2\sqrt{-y}, \quad \eta = \frac{2}{3}(-x)^{3/2}$$
 при $x < 0, y < 0.$

§6

37. 1)
$$v_{\xi\xi} + v_{\eta\eta} + v_{\zeta\zeta} = 0$$
, $\xi = x$, $\eta = y - x$, $\zeta = x - \frac{1}{2}y + \frac{1}{2}z$.

2)
$$v_{\xi\xi} + v_{\eta\eta} = 0$$
, $\xi = x$, $\eta = y - x$, $\zeta = 2x - y + z$.

3)
$$v_{\xi\xi} - v_{\eta\eta} + v_{\zeta\zeta} + \frac{3}{2}v_{\xi} - \frac{1}{2}v_{\eta} = 0,$$

 $\xi = x + y, \quad \eta = -x + y, \quad \zeta = \frac{\sqrt{2}}{2}(-x + 2y + z).$

38. 1)
$$v_{\xi\xi} - v_{\eta\eta} + 2v_{\eta} + 2v_{\zeta} + v = 0$$
,
 $\xi = x + y$, $\eta = -x + y$, $\zeta = y + z$,
 $v = e^{\eta - \zeta}w$, $w_{\xi\xi} - w_{\eta\eta} + 2w_{\zeta} = 0$.

2)
$$v_{\xi\xi} - v_{\eta\eta} + v_{\xi} + 2v_{\eta} + v_{\zeta} + v = 0,$$

 $\xi = x, \quad \eta = x + y, \quad \zeta = -y + z,$
 $v = e^{-\frac{1}{4}(2\xi - 4\eta + 7\zeta)}w, \quad w_{\xi\xi} - w_{\eta\eta} + w_{\zeta} = 0.$

3)
$$v_{\xi\xi} - v_{\eta\eta} + v_{\zeta\zeta} + v_{\xi} + v_{\eta} + v_{\zeta} + v = 0,$$

 $\xi = x, \quad \eta = -x + 2y, \quad \zeta = z,$
 $v = e^{-\frac{1}{2}(\xi - \eta + \zeta)}w, \quad w_{\xi\xi} - w_{\eta\eta} + w_{\zeta\zeta} + \frac{3}{4}w = 0.$

4)
$$v_{\xi\xi} - v_{\eta\eta} + v_{\zeta\zeta} + v_{\xi} + 2v_{\eta} + v_{\zeta} + v = 0,$$

 $\xi = y, \quad \eta = x + y, \quad \zeta = z,$
 $v = e^{-\frac{1}{2}(\xi - 2\eta + \zeta)}w, \quad w_{\xi\xi} - w_{\eta\eta} + w_{\zeta\zeta} + \frac{3}{2}w = 0.$

5)
$$v_{\xi\xi} + v_{\eta\eta} + v_{\zeta\zeta} + v_{\xi} + v_{\eta} + v_{\zeta} + 4v = 0,$$

 $\xi = x - y, \quad \eta = y, \quad \zeta = z,$
 $v = e^{-\frac{1}{2}(\xi + \eta + \zeta)}w, \quad w_{\xi\xi} + w_{\eta\eta} + w_{\zeta\zeta} + \frac{13}{4}w = 0.$

6)
$$v_{\xi\xi} + v_{\eta\eta} + v_{\zeta\zeta} + v_{\xi} + v_{\eta} + v_{\zeta} + v = 0,$$

 $\xi = x + y, \quad \eta = -y, \quad \zeta = z,$
 $v = e^{-\frac{1}{2}(\xi + \eta + \zeta)}w, \quad w_{\xi\xi} + w_{\eta\eta} + w_{\zeta\zeta} + \frac{1}{4}w = 0.$

7)
$$v_{\xi\xi} + 2v_{\xi} + 2v_{\eta} - 3v_{\zeta} + v = 0$$
,

$$\xi = x, \quad \eta = x + y, \quad \zeta = -x + z,$$
 $v = e^{-\xi + 3\eta + 2\zeta}w, \quad w_{\xi\xi} + 2w_{\eta} - 3w_{\zeta} = 0.$

87

39. 1)
$$u(x,y) = \frac{x(y+x^2)}{4} + \phi(x^2+y) \ln|x| + \psi(x^2+y)$$
.

2)
$$u(x,y) = \phi(\sqrt{x} - \sqrt{y}) + \psi(\sqrt{x} + \sqrt{y}).$$

3) В области $1-x^2+y^2>0$ уравнение имеет гиперболический тип, а в области $1-x^2+y^2<0$ – эллиптический тип. Кривая $1-x^2+y^2=0$ является линией параболичности.

$$u(x,y) = \phi\left(\frac{1+x}{y+\sqrt{1-x^2+y^2}}\right) + \psi\left(\frac{1+x}{y-\sqrt{1-x^2+y^2}}\right).$$

Указание. При интегрировании уравнений характеристик

$$(xy \pm \sqrt{1 - x^2 + y^2})dx + (1 - x^2)dy = 0$$

введите новые переменные z и t по правилу

$$t^2 = 1 - x^2, \quad y = zt.$$

4) Вне окружности $x^2 + y^2 = 1$ уравнение имеет гиперболический тип, внутри этой окружности — эллиптический. Сама окружность является линией параболичности.

$$u(x,y) = \phi\left(\frac{1-x}{y - \sqrt{x^2 + y^2 - 1}}\right) + \psi\left(\frac{1-x}{y + \sqrt{x^2 + y^2 - 1}}\right).$$

40. 1)
$$u(x,y) = \frac{(y-3x)^2}{4} + \frac{3}{4}(y+x)^2 = 3x^2 + y^2$$
.

2)
$$u(x,y) = 2(x+y) - 5 + 5e^{-\frac{1}{6}(x+y) - \frac{y-5x}{30}} = 2(x+y) - 5 + 5e^{-\frac{y}{5}}$$
.

3)
$$u(x,y) = \frac{3}{2}\cos\frac{\cos y + 2y - x}{2} - \frac{1}{2}\cos\frac{\cos y - 2y - x}{2}$$
.

4)
$$u(x,y) = \frac{u_0(x+y-\cos x)+u_0(x-y+\cos x)}{2} + \frac{1}{2} \int_{x-y+\cos x}^{x+y-\cos x} u_1(\xi) d\xi.$$

5) a)
$$u(x,y) = \frac{3}{4}(x - \frac{2}{3}y^3)^2 + (y + \frac{x}{2})^2$$
;

6)
$$u(x,y) = F(x - \frac{2}{3}y^3) + \frac{1}{2} \int_{x - \frac{2}{3}y^3}^{x+2y} G(\xi) d\xi.$$

6)
$$u(x,y) = F(xy^{1/3}) + \frac{1}{4} \sqrt[4]{yx^3} \cdot \int_{xy^{1/3}}^{x/y} z^{-\frac{7}{4}} (zF'(z) - 3G(z)) dz.$$

41. Введите новую переменную t = 2(2n+1)x и установите справедливость рекуррентного соотношения

$$u_{n+1}(t,y) = \frac{\partial u_n}{\partial t},\tag{*}$$

где $u_n(t,y)$ – решение заданного уравнения в новых переменных, соответствующее указанному значению параметра n. Покажите, что общее решение заданного уравнения в новых переменных при n=0 имеет вид

$$u_0(t,y) = F_1(\sqrt{t} - y) + F_2(\sqrt{t} + y),$$
 (**)

где F_1 и F_2 – произвольные функции. Применяя к функции u_0 в виде (**) формулу (*) n раз, получим общее решение заданного уравнения.

42. Общее решение заданного уравнения при n=0 имеет вид

$$u_0(x,t) = \frac{\Phi(x-at) + \Psi(x+at)}{x},$$

где Ф, Ψ – произвольные функции.

Покажите, что решения уравнения u_n и u_{n+1} связаны соотношением

$$u_{n+1} = x^n \frac{\partial}{\partial x} \left(\frac{u_n}{x^n} \right).$$

Применяя эту формулу n раз к функции $u_0(x,t)$, получим общее решение заданного уравнения.

- **43.** $u(x,y)=\frac{1}{x-y}\frac{\partial}{\partial x}\left(\frac{X(x)-Y(y)}{x-y}\right),$ где X(x),Y(y) произвольные функции.
- **44.** $u(x,y) = \frac{\tau(x-2\sqrt{-y}) + \tau(x+2\sqrt{-y})}{2}$, (y<0).

Указание. Следует воспользоваться общим решением заданного уравнения

$$u(x,y) = F_1(x - 2\sqrt{-y}) + F_2(x + 2\sqrt{-y}),$$

где F_1, F_2 – произвольные функции.

Глава III

§1

1.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial}{\partial x} \left((l-x) \frac{\partial u}{\partial x} \right), \quad a^2 = g,$$

$$u(x,t) - \text{смещение точки}, \, l-\text{длина нити}, \, g - \text{ускорение силы тяжести}.$$

2.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial}{\partial x} \left((l-x) \frac{\partial u}{\partial x} \right) + \omega^2 u, \quad a^2 = g.$$

3.
$$v_{tt} = a^2 v_{xx} - h^2 v_t$$
, $a^2 = \sqrt{\frac{T_0}{\rho}}$.

§2

- 7. $u_{tt} = a^2 u_{xx} + \frac{1}{\rho} F(x,t), \quad 0 < x < l, t > 0, \quad a^2 = \frac{T}{\rho},$ $u(0,t) = u(l,t) = 0, \quad t > 0,$ $u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 < x < l.$
- 8. $u_{tt} = a^2 u_{xx}$, 0 < x < l, t > 0, $a^2 = \frac{T}{\rho}$, $u(0,t) = u_x(l,t) = 0$, t > 0, $u(x,0) = \phi(x)$, $u_t(x,0) = 0$, 0 < x < l.
- 9. $u_t=a^2u_{xx},\quad 0< x< l, t>0,\quad a^2=\frac{T}{\rho},$ $u(x,0)=u_0,\quad 0< x< l,$ $u(0,t)=u_0,\quad u_x(l,t)+\gamma[u(l,t)-\phi(t)]=0,\quad t>0,$ где γ коэффициент теплообмена между стержнем и средой.
- **10.** 1) $u_{tt} = a^2 u_{xx}$, 0 < x < l, t > 0, $a^2 = \frac{T}{\rho}$, $u_x(0,t) = u_x(l,t) = 0$, t > 0, $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$, 0 < x < l.
 - 2) $u_{tt} = a^2 u_{xx}$, 0 < x < l, t > 0, $a^2 = \frac{T}{\rho}$, $u_x(0,t) = -\frac{1}{ST}F(t)$, $u_x(l,t) = \frac{1}{ST}G(t)$, t > 0, $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$, 0 < x < l.
 - 3) $u_{tt} = a^2 u_{xx}, \quad 0 < x < l, t > 0, \quad a^2 = \frac{T}{\rho},$ $STu_x(0,t) \sigma_1 u(0,t) = 0, \quad STu_x(l,t) + \sigma_2 u(l,t) = 0, \quad t > 0,$ $u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 < x < l,$ где σ_1, σ_2 коэффициенты жесткости упругого крепления концов.
 - 4) $u_{tt} = a^2 u_{xx}$, 0 < x < l, t > 0, $a^2 = \frac{T}{\rho}$,

$$\alpha u_t(0,t) + STu_x(o,t) = 0, \quad u(l,t) = 0, \quad t > 0,$$

 $u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 < x < l,$

где α – коэффициент пропорциональности в выражении силы сопротивления - $\alpha u_t(0,t)$, действующей на конец x=0.

5)
$$u_{tt} = a^2 u_{xx} + \frac{1}{\rho} F(x,t), \quad 0 < x < l, t > 0, \quad a^2 = \frac{T}{\rho},$$

 $u(0,t) = u(l,t) = 0, \quad t > 0,$
 $u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 < x < l.$

6)
$$u_{tt} = a^2 u_{xx} - \alpha u_t$$
, $0 < x < l, t > 0$, $a^2 = \frac{T}{\rho}$, $u(0,t) = \mu(t)$, $u(l,t) = \nu(t)$, $t > 0$, $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$, $0 < x < l$,

где α – коэффициент пропорциональности в выражении силы сопротивления отклонению $-\alpha u_t$, действующей на единицу массы.

7)
$$u_{tt} = a^2 u_{xx}$$
, $0 < x < l, t > 0$, $a^2 = \frac{T}{\rho}$, $u(0,t) = 0$, $-STu_x(l,t) = mu_{tt}(l,t)$, $t > 0$, $u(x,0) = \phi(x)$, $u_t(x,0) = \psi(x)$, $0 < x < l$.

11. 1)
$$\left[r + \frac{(R-r)}{l} x \right]^2 u_{tt} = \frac{T}{\rho} \frac{\partial}{\partial x} \left\{ \left[r + \frac{(R-r)}{l} x \right]^2 u_x \right\}, \quad 0 < x < l, t > 0,$$

$$u(0,t) = u(l,t) = 0, \quad t > 0,$$

$$u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad 0 < x < l.$$

2)
$$\rho S u_{tt} = T \frac{\partial}{\partial x} (S u_x), \quad 0 < x < l, t > 0,$$

 $S(0) T u_x(0, t) - \sigma u(0, t) = 0, \quad T u_x(l, t) = F(t), \quad t > 0,$
 $u(x, 0) = \phi(x), \quad u_t(x, 0) = \psi(x), \quad 0 < x < l,$

где σ – коэффициент жесткости упругого крепления.

12. 1)
$$S \frac{\partial u}{\partial t} = a^2 \frac{\partial}{\partial x} (Su_x), \quad 0 < x < l, t > 0, \quad a^2 = \frac{k}{c\rho},$$

$$u_x(0,t) = u_x(l,t) = 0, \quad t > 0,$$

$$u(x,0) = \phi(x), \quad 0 < x < l.$$

2)
$$S \frac{\partial u}{\partial t} = a^2 \frac{\partial}{\partial x} (Su_x), \quad 0 < x < l, t > 0, \quad a^2 = \frac{k}{c\rho},$$

 $u_x(0,t) = -\frac{1}{kS(0)} q(t), \quad u_x(l,t) = \frac{1}{kS(l)} Q(t), \quad t > 0,$
 $u(x,0) = \phi(x), \quad 0 < x < l.$

3)
$$S \frac{\partial u}{\partial t} = a^2 \frac{\partial}{\partial x} (Su_x), \quad 0 < x < l, t > 0, \quad a^2 = \frac{k}{c\rho},$$

$$\begin{split} &u_x(0,t)-h_1[u(0,t)-\tau(t)]=0,\quad u_x(l,t)+h_2[u(l,t)-\theta(t)]=0,\quad t>0,\\ &h_i=\frac{\chi_i}{k},\ i=1,2,\\ &u(x,0)=\phi(x),\quad 0< x< l, \end{split}$$

где χ_i – коэффициент теплопроводности при теплообмене на концах.

4)
$$S \frac{\partial u}{\partial t} = a^2 \frac{\partial}{\partial x} (Su_x), \quad 0 < x < l, t > 0, \quad a^2 = \frac{k}{c\rho},$$

 $u(0,t) = \mu(t), \quad kS(l)u_x(l,t) + cmu_t(l,t) = 0, \quad t > 0,$
 $u(x,0) = \phi(x), \quad 0 < x < l.$

5)
$$S \frac{\partial u}{\partial t} = a^2 \frac{\partial}{\partial x} (Su_x), \quad 0 < x < l, t > 0, \quad a^2 = \frac{k}{c\rho},$$

 $kS(0)u_x(0,t) - cmu_t(0,t) = 0, \quad t > 0,$
 $kS(l)u_x(l,t) + cmu_t(l,t) = q(t), \quad t > 0,$
 $u(x,0) = \phi(x), \quad 0 < x < l.$

13. 1)
$$u_t = a^2 u_{xx}$$
, $0 < x < l, t > 0$, $a^2 = \frac{\alpha D}{c}$, $u(0,t) = \mu(t)$, $u_x(l,t) = 0$, $t > 0$, $u(x,0) = \phi(x)$, $0 < x < l$,

где α — коэффициент пористости сечения, равный отношению площади пор в данном сечении к площади этого сечения.

2)
$$u_t = a^2 u_{xx}$$
, $0 < x < l, t > 0$, $a^2 = \frac{\alpha D}{c}$, $u_x(0,t) = -\frac{1}{\alpha SD}q(t)$, $u_x(l,t) + \frac{d}{D}u(l,t) = 0$, $t > 0$, $u(x,0) = \phi(x)$, $0 < x < l$,

где α – коэффициент пористости сечения, d – коэффициент внешней диффузии через пористую перегородку.

14. 1)
$$u_t = \frac{k}{c\rho} u_{xx} - \frac{\chi\sigma}{c\rho S} u + \frac{\chi\sigma}{c\rho S} v(t) + \frac{\beta I^2 R}{c\rho S}, \quad 0 < x < l, t > 0,$$

 $kSu_x(0,t) = Cu_t(0,t), \quad -kSu_x(l,t) = Qu_t(0,t), \quad t > 0,$
 $u(x,0) = \phi(x), \quad 0 < x < l,$

где β — коэффициент пропорциональности в формуле $q=\beta I^2R\Delta x$, выражающей количество тепла, выделяемое током в единицу времени в элементе провода $(x;x+\Delta x)$.

2)
$$u_t = \frac{k}{c\rho} u_{xx} - \frac{\chi \sigma}{c\rho S} u + \frac{\chi \sigma}{c\rho S} v(t) + \frac{1}{c\rho} F(x,t), \quad 0 < x < l, t > 0,$$

 $kSu_x(0,t) = Cu_t(0,t), \quad -kSu_x(l,t) = Qu_t(0,t), \quad t > 0,$
 $u(x,0) = \phi(x), \quad 0 < x < l.$

3)
$$u_t = \frac{k}{c\rho} u_{xx} - \frac{\alpha}{c\rho S} u_t - \frac{\chi \sigma}{c\rho S} u + \frac{\chi \sigma}{c\rho S} v(t), \quad 0 < x < l, t > 0,$$

 $kSu_x(0,t) = Cu_t(0,t), \quad -kSu_x(l,t) = Qu_t(0,t), \quad t > 0,$

$$u(x,0) = \phi(x), \quad 0 < x < l,$$

где α – коэффициент пропорциональности в формуле $q=\alpha u_t S \Delta x$, выражающей количество тепла, поглощенного объемом $S \Delta x$ элемента стержня $(x; x+\Delta x)$.

15. 1)
$$u_t = Du_{xx} - \gamma u^{1/2} - \frac{\sigma d}{S}[u - v(t)], \quad 0 < x < l, t > 0,$$

$$u_x(0,t) - \frac{d}{D}[u(0,t) - v(t)] = 0, \quad t > 0,$$

$$u_x(l,t) + \frac{d}{D}[u(l,t) - v(t)] = 0, \quad t > 0,$$

$$u(x,0) = \phi(x), \quad 0 < x < l,$$

где γ – коэффициент пропорциональности при распаде, d – коэффициент внешней диффузии (через пористую перегородку).

$$\begin{array}{ll} 2)\; u_t = Du_{xx} + \gamma u u_t - \frac{\sigma d}{S}[u-v(t)], & 0 < x < l, t > 0, \\ u_x(0,t) - \frac{d}{D}[u(0,t)-v(t)] = 0, & t > 0, \\ u_x(l,t) + \frac{d}{D}[u(l,t)-v(t)] = 0, & t > 0, \\ u(x,0) = \phi(x), & 0 < x < l, \end{array}$$

где γ – коэффициент пропорциональности при размножении, d – коэффициент внешней диффузии (через пористую перегородку).

16. Обозначим через Δ_r – радиальную часть оператора Лапласа в сферической системе координат

$$\Delta_r = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right).$$

1)
$$u_t = a^2 \Delta_r u - \beta u$$
, $0 \le r < R, t > 0$, $a^2 = \frac{k}{c\rho}$, $\beta = \frac{\alpha}{c\rho}$, $\frac{\partial u(R,t)}{\partial r} = 0$, $t > 0$, $u(r,0) = T$, $0 \le r < R$,

где α – коэффициент поглощения тепла.

2)
$$u_t = a^2 \Delta_r u + \frac{Q}{c\rho}$$
, $0 \le r < R, t > 0$, $a^2 = \frac{k}{c\rho}$, $k \frac{\partial u(R,t)}{\partial r} + \alpha u(R,t) = 0$, $t > 0$, $u(r,0) = T$, $0 \le r < R$,

где α – коэффициент теплообмена (внешней теплопроводности).

17. 1)
$$k\Delta u - \gamma u + Q = 0$$
, $0 \le r < r_0$, $0 < z < h$, $u(r,0) = u(r,h) = 0$, $0 \le r < r_0$, $\frac{\partial u(r_0,z)}{\partial r} = 0$, $0 < z < h$,

где γ – коэффициент распада газа.

2)
$$k\Delta u - \gamma u + Q = 0$$
, $0 \le r < r_0$, $0 < z < h$,

$$D\frac{\partial u(r,0)}{\partial z} - \alpha u(r,0) = 0, \quad D\frac{\partial u(r,h)}{\partial z} + \alpha u(r,h) = 0, \ 0 \le r < r_0,$$

$$u(r_0,z) = 0, \ 0 < z < h,$$

где α – коэффициент внешней диффузии (обмена), γ – коэффициент распада газа.

Глава IV

1.a)
$$\Delta u = \frac{1}{\sqrt{\sigma}} \left(\frac{\partial}{\partial \xi} \left(\sqrt{\sigma} \sigma_{11} \frac{\partial u}{\partial \xi} \right) + \frac{\partial}{\partial \xi} \left(\sqrt{\sigma} \sigma_{12} \frac{\partial u}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left(\sqrt{\sigma} \sigma_{21} \frac{\partial u}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\sqrt{\sigma} \sigma_{22} \frac{\partial u}{\partial \eta} \right) \right),$$

где

$$\sigma = (x_{\xi}y_{\eta} - x_{\eta}y_{\xi})^2,$$

$$\sigma_{11} = \frac{1}{\sigma}(x_{\eta}^2 + y_{\eta}^2), \quad \sigma_{12} = \sigma_{21} = -\frac{1}{\sigma}(x_{\eta}x_{\xi} + y_{\xi}y_{\eta}), \quad \sigma_{22} = \frac{1}{\sigma}(x_{\xi}^2 + y_{\xi}^2).$$

6)
$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2}.$$

B)
$$\frac{\sqrt{(\xi^2 - 1)(1 - \eta^2)}}{\xi \eta(\xi^2 - \eta^2)} \left\{ \frac{\partial}{\partial \xi} \left[\sqrt{\frac{\xi^2 - 1}{1 - \eta^2}} \xi \eta \frac{\partial u}{\partial \xi} \right] + \frac{\partial}{\partial \eta} \left[\sqrt{\frac{1 - \eta^2}{\xi^2 - 1}} \xi \eta \frac{\partial u}{\partial \eta} \right] + \frac{\partial}{\partial \phi} \left[\frac{\xi^2 - \eta^2}{\xi \eta} \frac{1}{\sqrt{(\xi^2 - 1)(1 - \eta^2)}} \frac{\partial u}{\partial \phi} \right] \right\}.$$

- **4.**1) $\frac{\partial u}{\partial n} = 1$ в точках максимума $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}); \frac{\partial u}{\partial n} = -1$ в точках минимума $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}).$
- 2) $\frac{\partial u}{\partial n}=4$ точках максимума (2;0),(-2;0); $\frac{\partial u}{\partial n}=-6$ в точках минимума (0;3),(0;-3).

$\S 2$

6. 1)
$$A = 0$$
; 2) $A = -R^2$; 3) $B = \frac{AR^2}{2}$; 4) $B = A$.

7. 1)
$$u = T + (U - T) \frac{\ln \frac{r}{a}}{\ln \frac{b}{a}}$$
. 2) $u = T + bU \ln \frac{r}{a}$.

3) $u=aT\ln r+const,$ если aT=bU. Если $aT\neq bU,$ то задача поставлена некорректно.

4)
$$u = T + \frac{b(U - hT)\ln\frac{r}{a}}{1 + bh\ln\frac{b}{a}}$$
. 5) $u = \frac{bU - aT}{ah} + bU\ln\frac{r}{a}$.

6)
$$u = T \cdot \frac{h \ln \frac{r}{b} - \ln \frac{r}{c}}{h \ln \frac{a}{b} - \ln \frac{a}{c}}.$$

8. 1)
$$u(a) = \frac{T(1 + bh \ln \frac{b}{a}) - bW \ln \frac{c}{a}}{1 + bh \ln \frac{b}{c}}.$$

2)
$$u(a) = T + cU \ln \frac{a}{d}$$
, $u(a) = T + cU \ln \frac{b}{d}$

3)
$$u(b) = \frac{T_0 \ln \frac{b}{a} - T \ln \frac{b}{c}}{\ln \frac{c}{a}}.$$

9. 1)
$$u(R) = T + \frac{a(R^3 - c^3)}{9}$$
. 2) $R = \sqrt[3]{c^3 + \frac{9}{a}(T - T_0)}$.

10. 1)
$$u(a) = a - c + T + \frac{T_0 - T - b + c}{\ln \frac{b}{a}} \ln \frac{a}{c}$$
.

2)
$$u(a) = a - b + T + c(U - 1) \ln \frac{a}{b}$$
.

3)
$$u_r(a) = \frac{a + d(U - 1)}{a}$$
, $u(b) = T + b - c + d(U - 1) \ln \frac{b}{c}$.

11.
$$u(r) = T - \int_{r}^{R} \frac{1}{\rho^{2}} \left[\int_{0}^{\rho} t^{2} f(t) dt \right] d\rho.$$

12. 1)
$$u(R) = T + \frac{Q}{k}(a^2 - R^2)$$
.

2)
$$u(R) = \frac{T(R^2 - c^2) - T_0(R^2 - d^2)}{d^2 - c^2}, \quad Q = \frac{k(T - T_0)}{c^2 - d^2}.$$

3)
$$u(R) = T + \frac{U}{2b}(R^2 - a^2), \quad Q = -\frac{kU}{2b}.$$

4)
$$R = \sqrt{\frac{k(T_0 - T)}{Q}}.$$

Указание. Стационарное распределение температуры в шаре описывается уравнением $\Delta u(r) = -\frac{6Q}{k}$.

13. 1)
$$u(a) = T_0 + \frac{b(c-a)}{a(c-b)}(T-T_0).$$

$$2) \quad u(a) = T + \frac{b^2 U(a-c)}{ac}.$$

3)
$$u(a) = T + \frac{b^2(a-c)(W-hT_0)}{a(c-bch-b^2h)}$$
.

4)
$$u(a) = T + \frac{d^2(a-c)U}{ac}$$
, $u(b) = T + \frac{d^2(b-c)U}{bc}$.

14.
$$u(r) = \frac{ab(T_1 - T_2)}{b - a} \cdot \frac{1}{r} + \frac{bT_2 - aT_1}{b - a}$$
.

- **15.** Указание. Стационарное распределение температуры в шаровом слое описывается уравнением $\Delta u(r) = -\frac{2Q}{kr}$.
 - 1) $u(r) = T + \frac{Q}{k}(b-r) + a^2(U + \frac{Q}{k})(\frac{1}{b} \frac{1}{r}).$

2)
$$u(a) = T + \frac{Q}{k}(b-a) - \frac{b}{a}(b-a)(U + \frac{Q}{k}).$$

3)
$$Q = \frac{k(Ta + Uab - T_0a - Ub^2)}{(a - b)^2}.$$

16. $u(a) = T + cQ\left(\frac{1}{k_1}\ln\frac{b}{a} + \frac{1}{k_2}\ln\frac{c}{b}\right)$. Функция u(r) равна

$$u(r) = \begin{cases} u_1(r), & a \le r \le b, \\ u_2(r), & b \le r \le c \end{cases}$$

и является решением задачи

$$\Delta u_1(r) = 0, \quad a < r < b, \qquad \Delta u_2(r) = 0, \quad b < r < c,$$

$$u_1(b) = u_2(b), \quad k_1 \frac{\partial u_1}{\partial r} \Big|_{r=b} = k_2 \frac{\partial u_2}{\partial r} \Big|_{r=b},$$

$$u_2(c) = T, \quad \frac{\partial u_2}{\partial r} \Big|_{r=b} = -\frac{Q}{k_2}.$$

Глава V

§1

5. С помощью преобразования $u(x,y) = e^{-\frac{p}{2}x}v(x,y)$ исходная задача приводится к задаче относительно новой функции v(x,y):

$$\begin{aligned} v_{xx} - v_y &= 0, & 0 < x < \pi, \ 0 < y < T, \\ v(0, y) &= v(\pi, y) = 0, & 0 \le y \le T, \\ v(x, 0) &= \sin x, & 0 \le x \le \pi. \end{aligned}$$

- 7. 1) u(x,t) = x + t. 2) u(x,t) = xt. 3) $u(x,t) = (1 \frac{x}{l})\mu(t) + \frac{x}{l}\nu(t)$. 4) $u(x,t) = (x-l)\mu(t) + \nu(t)$. 5) $u(x,t) = \mu(t) + x\nu(t)$.

 - 6) $u(x,t) = x\mu(t) + \frac{x^2}{2!}(\nu(t) \mu(t)).$
 - 7) $u(x,t) = \frac{(x-l)\mu(t) + (hx+1)\nu(t)}{1+ht}$.
 - 8) $u(x,t) = \frac{x}{2+hl}(\mu(t) + \nu(t)) + \frac{1}{h(2+hl)}(\nu(t) \mu(t) hl\mu(t)).$
- **8.** Выполнив замену искомой функции $u(x,t) = v(x,t) + \mu(t) + x(\nu(t) \mu(t))$ $\mu(t)$), получим задачу

$$v_{xx} - v_t = f(x,t) + \mu'(t) + x[\nu'(t) - \mu'(t)], \quad v(0,t) = 0, \quad v(1,t) = 0.$$

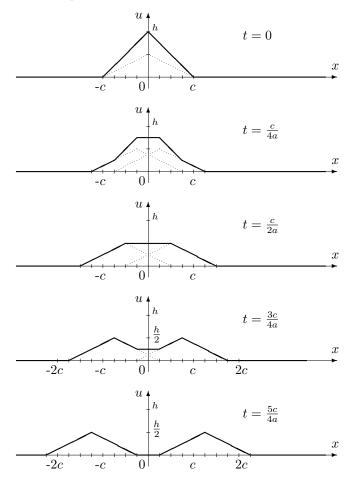
$\S 2$

- **13.** 1) $u(x,t) = x^2 + t^2 + 4xt$.
 - 2) $u(x,t) = xt + \sin(x+t) e^x(1-\cosh t)$.
 - 3) $u(x,t) = \frac{1}{2}e^{\frac{3t-5x}{2}} \left[2t + e^{-x^2-t^2} \left(2x \operatorname{ch} 2xt \left(2t + \frac{3}{2}\right) \operatorname{sh} 2xt\right)\right].$
 - 4) $u(x,t) = at + \frac{1}{2}bx^2t^2 + \frac{1}{12}bt^4 + e^{-x}\operatorname{ch} t$.
 - 5) $u(x,t) = x + \frac{axt^3}{6} + \sin x \sin t$.
 - 6) $u(x,t) = at + a(e^{-t} 1) + b \sin x \cos t + c \cdot \cos x \sin t$.
 - 7) $u(x,t) = \frac{at}{b} \frac{a}{b^2} \sin bt + \cos(x-t)$.
 - 8) $u(x,t) = x(t \sin t) + \sin (x + t)$.
- **14.** $u(x,t) = \frac{(h-x-at)f(x+at)+(h-x+at)f(x-at)}{2(h-x)} + \frac{1}{2a(h-x)} \int_{-\infty}^{x+at} (h-\xi)F(\xi) d\xi.$

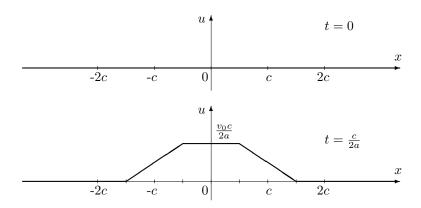
Указание. Введя новую функцию v(x,t) = (h-x)u(x,t), исходную задачу преобразуйте к виду

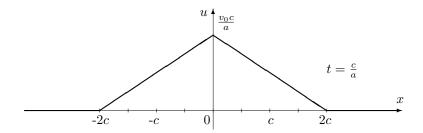
$$v_{tt} = a^2 v_{xx}, \quad v(x,0) = (h-x)f(x), \quad v_t(x,0) = (h-x)F(x).$$

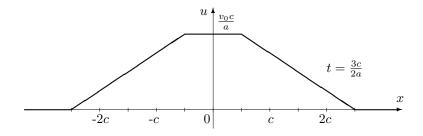
15. Профили струны для моментов времени $t_k = \frac{kc}{4a}, \ k = 0, 1, 2, 3, 5$ приводятся на рис.1.



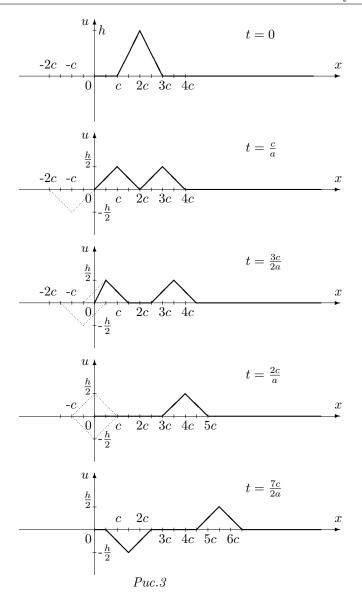
Puc.1

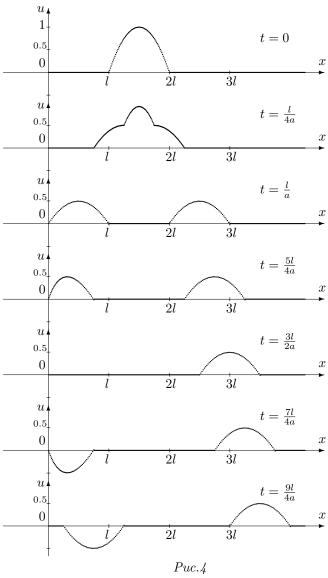






Puc.2





$$\mathbf{16.} \ \ u(x,t) = \left\{ \begin{array}{ll} 0, & |x| > c + at, \\ v_0t, & |x| \leq c - at, \\ \frac{v_0c}{a}, & |x| \leq at - c, \\ \frac{v_0(x+at+c)}{2a}, & x - at \leq -c \leq x + at \leq c, \\ \frac{v_0(at-x+c)}{2a}, & -c \leq x - at \leq c \leq x + at. \end{array} \right.$$

Профили струны для моментов времени $t_k = \frac{kc}{2a}, \ k = 0, 1, 2, 3$ приводятся на рис.2.

$$\mathbf{19.} \ 1) \ u(x,t) = \left\{ \begin{array}{l} \frac{f(x+at) + f(x-at)}{2} + \frac{1}{2a} \int\limits_{x-at}^{x+at} g(\eta) \, d\eta, \quad x > 0, t < \frac{x}{a}, \\ \frac{f(x+at) - f(at-x)}{2} + \frac{1}{2a} \int\limits_{at-x}^{x+at} g(\eta) \, d\eta, \quad x > 0, t > \frac{x}{a}. \end{array} \right.$$

$$2) \ u(x,t) = \left\{ \begin{array}{l} \frac{f(x+at) + f(x-at)}{2} + \frac{1}{2a} \int\limits_{x-at}^{x+at} g(\eta) \, d\eta, \quad x > 0, t < \frac{x}{a}, \\ \frac{f(x+at) + f(at-x)}{2} + \frac{1}{2a} \int\limits_{x-at}^{x+at} g(\eta) \, d\eta, \quad x > 0, t < \frac{x}{a}, \\ \frac{f(x+at) + f(at-x)}{2} + \frac{1}{2a} \left\{ \int\limits_{0}^{x+at} g(\eta) \, d\eta + \int\limits_{0}^{at-x} g(\eta) \, d\eta \right\}, \quad x > 0, t > \frac{x}{a} \end{array} \right.$$

- **20.** Профили струны в моменты времени $t_k = \frac{kc}{2a}, \ k = 0, 2, 3, 4, 7$ изображены на рис.3.
- **21.** Профили струны в моменты времени $t_k = \frac{kc}{4a}, \ k = 0, 1, 4, 5, 6, 7, 9$ изображены на рис.4.

22.
$$u(r,t) = \frac{(r-at)\phi(r-at)+(r+at)\phi(r+at)}{2r} + \frac{1}{2ar} \int_{r-at}^{r+at} \rho \psi(\rho) d\rho.$$

Указание. Ввести сферические координаты. Решение, очевидно, не зависит от угловых координат, поэтому волновое уравнение примет вид

$$u_{tt} = a^2(u_{rr} + \frac{2}{r}u_r).$$

Общее решение уравнения

$$u(r,t) = \frac{\Phi(r-at) + \Psi(r+at)}{r},$$

где Φ, Ψ – произвольные функции.

23. a)
$$X_k(x) = \sin \frac{k\pi x}{l}$$
, $c_k = \left(\frac{k\pi}{l}\right)^2$, $||X_k||^2 = \frac{l}{2}$, $k = 1, 2, ...$

6)
$$X_k(x) = \cos\frac{(2k+1)\pi x}{2l}$$
, $c_k = \left(\frac{(2k+1)\pi}{2l}\right)^2$, $||X_k||^2 = \frac{l}{2}$, $k = 0, 1, 2, \dots$

B)
$$X_k(x) = \sin\frac{(2k+1)\pi x}{2l}$$
, $c_k = \left(\frac{(2k+1)\pi}{2l}\right)^2$, $||X_k||^2 = \frac{l}{2}$, $k = 0, 1, 2, \dots$

r)
$$X_k(x) = \cos \frac{k\pi x}{l}$$
, $c_k = \left(\frac{k\pi}{l}\right)^2$, $k = 0, 1, 2, \dots$, $||X_0||^2 = l$, $||X_k||^2 = \frac{l}{2}$, $k = 1, 2, \dots$

- д) $X_k(x)=\sin\lambda_k x,\quad ||X_k||^2=\frac{l(h^2+\lambda_k^2)+h}{2(h^2+\lambda_k^2)},\quad \lambda_k$ положительные корни уравнения $h\operatorname{tg}\lambda l=-\lambda.$
- е) $X_k(x) = \lambda_k \cos \lambda_k x + h \sin \lambda_k x$, $||X_k||^2 = \frac{l(h^2 + \lambda_k^2) + h}{2}$, λ_k положительные корни уравнения $h \operatorname{ctg} \lambda l = \lambda$.
- ж) $X_k(x)=\lambda_k\cos\lambda_kx+h\sin\lambda_kx, \quad ||X_k||^2=\frac{l(h^2+\lambda_k^2)+2h}{2}, \quad \lambda_k$ положительные корни уравнения $\mathrm{tg}\,\lambda l=\frac{2h\lambda}{2-h^2}.$

25. 1)
$$1 = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \sin \frac{(2n+1)\pi x}{l}$$
.

2)
$$x = -\frac{2l}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \sin \frac{k\pi x}{l}$$
.

3)
$$x(l-x) = \frac{4l^2}{\pi^3} \sum_{k=1}^{\infty} \frac{1 - (-1)^k}{k^3} \sin \frac{k\pi x}{l}$$
.

4)
$$f_8 = 1, f_k = 0$$
 $\forall k \neq 8.$

26.
$$f(x) = \sum_{k=1}^{\infty} f_k \sin \frac{k\pi x}{l},$$

 $f_k = \frac{2l(k^2\pi^2 - 4l^2 + (-1)^k(2l - 1)(k^2\pi^2 - 4l^2) - k^2\pi^2\sin 2l)}{k^2\pi^2(k^2\pi^2 - 4l^2)}, \ k \neq 0, 7,$
 $f_0 = \frac{5}{2} + \frac{l(2l - 3)}{6} + \frac{\sin 2l}{4l}, \quad f_7 = 5 + \frac{4l(1 - l)}{49\pi^2} + \frac{2l\sin 2l}{49\pi^2 - 4l^2}.$

 $\S 4$

27.
$$u(x,t) = \frac{4l}{\pi^2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} e^{-\left(\frac{(2k+1)a\pi}{l}\right)^2 t} \sin\frac{(2k+1)\pi x}{l}.$$

28. 1)
$$u(x,t) = \sum_{k=0}^{\infty} a_k e^{-\left(\frac{(2k+1)a\pi}{2l}\right)^2 t} \sin\frac{(2k+1)\pi x}{2l}$$
,

$$a_k = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{(2k+1)\pi x}{2l} dx.$$

2)
$$u(x,t) = \frac{8Al}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} e^{-\left(\frac{(2k+1)a\pi}{2l}\right)^2 t} \cos\frac{(2k+1)\pi x}{2l}$$
.

3)
$$u(x,t) = \frac{Bl}{2} + \frac{2Bl}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^k - 1}{k^2} e^{-\left(\frac{ka\pi}{l}\right)^2 t} \cos\frac{k\pi x}{l}$$
.

29.
$$u(x,t) = 2u_0 \sum_{k=1}^{\infty} \frac{h - (-1)^k \sqrt{h^2 + \lambda_k^2}}{\lambda_k (h + l(h^2 + \lambda_k^2))} e^{-(a\lambda_k)^2 t} \Phi_k(x),$$

 $\Phi_k(x) = \lambda_k \cos \lambda_k x + h \sin \lambda_k x$, где λ_k – положительные корни уравнения $h \operatorname{tg} \lambda l = -\lambda$.

30.
$$u(x,t) = \sum_{k=1}^{\infty} (A_k \cos \frac{ak\pi t}{l} + B_k \sin \frac{ak\pi t}{l}) \sin \frac{k\pi x}{l},$$
$$A_k = \frac{2}{l} \int_0^l \phi(x) \sin \frac{k\pi x}{l} dx, \quad B_k = \frac{2}{ak\pi} \int_0^l \psi(x) \sin \frac{k\pi x}{l} dx.$$

31. 1)
$$u(x,t) = \frac{l}{2} + t - \frac{4l}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \cos \frac{a(2k+1)\pi t}{l} \cdot \cos \frac{(2k+1)\pi x}{l}$$
.

2)
$$u(x,t) = \cos \frac{a\pi t}{2l} \cos \frac{\pi x}{2l} + \frac{2l}{3a\pi} \sin \frac{3a\pi t}{2l} \cos \frac{3\pi x}{2l} + \frac{2l}{5\pi a} \sin \frac{5a\pi t}{2l} \cos \frac{5\pi x}{2l}$$
.

3)
$$u(x,t) = \sum_{k=1}^{\infty} (A_k \cos a\lambda_k t + B_k \sin a\lambda_k t) \sin \lambda_k x,$$

 $A_k = \frac{\int_0^1 f(x) \sin \lambda_k x \, dx}{||\sin \lambda_k x||^2}, \quad B_k = \frac{\int_0^1 q(x) \sin \lambda_k x \, dx}{|\lambda_k a||\sin \lambda_k x||^2},$
 $||\sin \lambda_k x||^2 = \frac{l(h^2 + \lambda_k^2) + h}{2(h^2 + \lambda_k^2)},$

где $\lambda_k,\ k=1,2,\ldots$ – положительные корни уравнения $\lambda=-h\operatorname{tg}\lambda l.$

32. 1)
$$u(x, y, t) = \cos \frac{\sqrt{s^2 + p^2 a \pi t}}{sp} \cdot \sin \frac{\pi x}{s} \sin \frac{\pi y}{p}$$
.

2)
$$u(x,y,t) = \frac{4I}{a\pi\rho} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin\frac{k\pi x_0}{s} \sin\frac{n\pi y_0}{p}}{\sqrt{k^2 p^2 + n^2 s^2}} \sin\left(\sqrt{\frac{k^2}{s^2} + \frac{n^2}{p^2}} a\pi t\right) \cdot \sin\frac{k\pi x}{s} \sin\frac{n\pi y}{p}.$$

3)
$$u(x,y,t) = \frac{2Aps^2}{a\pi^2} \sum_{k=1}^{\infty} \frac{1}{k\sqrt{k^2p^2+s^2}} \sin\frac{(a\pi\sqrt{k^2p^2+s^2})t}{ps} \cdot \sin\frac{k\pi x}{s} \sin\frac{\pi y}{p}$$
.

4)
$$u(x,y,t) = \frac{4Asp}{\pi^2} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{k+n}}{kn} \cos \frac{(a\pi\sqrt{k^2p^2 + n^2s^2})t}{ps} \sin \frac{k\pi x}{s} \sin \frac{n\pi y}{p}$$
.

33.
$$u(x,y,z,t) =$$

$$= \frac{64U}{\pi^3} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{kmn} e^{-\omega_{kmn}t} \sin \frac{(2k+1)\pi x}{l} \sin \frac{(2m+1)\pi y}{l} \sin \frac{(2n+1)\pi z}{l},$$

$$A_{kmn} = ((2k+1)(2m+1)(2n+1))^{-1},$$

$$\omega_{kmn} = \beta + \frac{a^2\pi^2}{l^2} [(2k+1)^2 + (2m+1)^2 + (2n+1)^2],$$
 β – коэффициент распада.

34.
$$u(x,t) = c_0 \left(\frac{h}{l} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi h}{l}}{n} e^{-\left(\frac{a\pi}{l}\right)^2 Dt} \cos \frac{n\pi x}{l} \right).$$
 Указание. Задача приводится к решению уравнения $u_t = Du_{xx}$

при условиях

$$u_x(0,t) = u_x(l,t) = 0, \quad u(x,0) = \begin{cases} c_0, & 0 < x < h, \\ 0, & h < x < l. \end{cases}$$

35.
$$u(r,t)=\frac{2}{Rr}\sum_{n=1}^{\infty}e^{-\left(\frac{a\pi n}{R}\right)^2t}\sin\frac{n\pi r}{R}\cdot\int\limits_0^R\rho f(\rho)\sin\frac{n\pi\rho}{R}\,d\rho.$$
 Указание. Задача приводится к решению уравнения

 $v_t=a^2v_{rr}$, где v=ru, $a=\sqrt{rac{k}{c
ho}}$

при условиях

$$v(0,t) = v(R,t) = 0, \quad v(r,0) = rf(r).$$

36.
$$u(r,t)=4u_0\sum_{n=1}^{\infty} rac{\sin\mu_n R - \mu_n R\cos\mu_n R}{\mu_n (4\mu_n R - \sin 4\mu_n R)} \cdot rac{\sin\mu_n r}{r} e^{-\mu_n^2 a^2 t},$$
 где μ_n – положительные корни уравнения

$$\operatorname{tg} 2\mu R = \frac{2\mu R}{1 - 2hR}.$$

Указание. Найти решение краевой задачи:

$$u_t = a^2(u_{rr} + \frac{2}{r}u_r),$$

u(0,t) – конечная величина, $\left. \left(u_r + hu \right) \right|_{r=2R} = 0,$

$$u(r,0) = \begin{cases} u_0, & 0 \le r \le R, \\ 0, & R < r \le 2R. \end{cases}$$

37.
$$u(r,t) = \sum_{k=1}^{\infty} A_k \frac{R\lambda_k \cos \lambda_k (r-R) + \sin \lambda_k (r-R)}{r} \cdot e^{-\lambda_k^2 a^2 t},$$

где $\lambda_k, k=1,2,\ldots$ – положительные корни уравнения

$$(1 - 2Rh + 2\lambda^2 R^2)\sin \lambda R = (1 + 2Rh)R\lambda\cos \lambda R,$$

$$A_k = \frac{3R^3\lambda_k^2(1+2Rh)u_0}{(1+\lambda_k^2R^2)[(1+2Rh)\lambda_k^2R^2+(2hR+2\lambda_k^2R^2-1)\sin^2\lambda_kR]}$$

Указание. Найти решение краевой задачи:

$$u_t = a^2(u_{rr} + \frac{2}{r}u_r), \quad u_r(R, t) = 0, \ (u_r + hu)|_{r=2R} = 0, \ u(r, 0) = u_0.$$

38. 1)
$$u(x,t) = \int_0^l \phi(\xi) G(x,\xi,t) d\xi + \int_0^t d\tau \int_0^l f(\xi,\tau) G(x,\xi,t-\tau) d\xi,$$

$$G(x,\xi,t) = \frac{2}{l} \sum_{k=1}^\infty e^{-\left(\frac{ak\pi}{l}\right)^2 t} \sin\frac{k\pi x}{l} \cdot \sin\frac{k\pi \xi}{l}.$$

2)
$$u(x,t) = \sum_{k=0}^{\infty} (-1)^k \frac{98}{\pi^3 (2k+1)^3} \left[1 - e^{-\left(\frac{2(2k+1)\pi}{7}\right)^2 t} \right] \cos \frac{(2k+1)\pi x}{2l}.$$

3)
$$u(x,t) = \sum_{k=0}^{\infty} A_k e^{-\left(\frac{k\pi a}{l}\right)^2 t} \cos\frac{k\pi x}{l} + \frac{2l^2}{a^2\pi^2} \left(1 - e^{-\left(\frac{a\pi}{l}\right)^2 t}\right) \cos\frac{\pi x}{l}$$

$$A_0 = \frac{1}{l} \int_0^l g(x) dx, \quad A_k = \frac{2}{l} \int_0^l g(x) \cos \frac{k\pi x}{l} dx, \ k = 1, 2, \dots$$

4)
$$u(x,t) = bx(l-x) + \frac{4bl^2}{\pi^3} \sum_{l=1}^{\infty} \frac{(-1)^k - 1}{k^3} \cos \frac{k\pi t}{l} \sin \frac{k\pi x}{l}$$
.

5)
$$u(x,t) = \frac{2}{\pi}t\sin t\sin x + \sum_{k=1}^{\infty} \frac{(\cos t - \cos(2k+1)t)}{\pi(2k+1)k(k+1)}\sin(2k+1)x.$$

6)
$$u(x,t) = 2\cos\frac{a\pi t}{l} \cdot \sin\frac{\pi x}{l} + \sum_{k=1}^{\infty} \frac{aAl^3(-1)^{k+1}}{k\pi(l^2 + (ak\pi)^2)} \left(e^{-t} - \cos\frac{k\pi at}{l} + \frac{l}{k\pi a}\sin\frac{k\pi at}{l}\right) \sin\frac{k\pi x}{l}.$$

7)
$$u(x,t) = \frac{4A}{4+a^2} \left(e^{-t} - \cos\frac{at}{2} + \frac{2}{a}\sin\frac{at}{2} \right) \cos\frac{x}{2} + \frac{4}{a}\sin\frac{at}{2} \cdot \cos\frac{x}{2} - \frac{4}{5a}\sin\frac{5at}{2} \cdot \cos\frac{5x}{2}.$$

39.
$$u(x,t) = \frac{400}{\pi^3} \sum_{k=1}^{\infty} \frac{(-1)^k - 1}{k^3} \cos \frac{k\pi t}{2} \sin \frac{k\pi x}{10} + \frac{28}{9\pi^2 - 4} (\sin t - \frac{2}{3\pi} \sin \frac{3\pi t}{2}) \sin \frac{3\pi x}{10}.$$

40.
$$u(x,t) = \frac{At(l-x)}{l} + \frac{A}{6a^2l}(3lx^2 - x^3 - 2l^2x) + \frac{2Al^2}{a^2\pi^3} \sum_{k=1}^{\infty} \frac{1}{k^3} e^{-\left(\frac{ak\pi}{l}\right)^2 t} \sin\frac{k\pi x}{l}$$
.

41. 1)
$$u(x,t) = -\frac{a^2A}{2l}t^2 - (\frac{A}{2l}x^2 - Ax + \frac{Al}{3} - \frac{a^2T}{l})t + \frac{T}{2l}x^2 - \frac{lT}{6} + \frac{2l}{a^2\pi^4} \sum_{k=1}^{\infty} \frac{1}{k^4} \left\{ Al^2 - (Al^2 + (-1)^kT(ak\pi)^2)e^{-\left(\frac{ak\pi}{l}\right)^2t} \right\} \cos\frac{k\pi x}{l}.$$

2)
$$u(x,t) = \frac{2}{l} \sum_{k=1}^{\infty} \left(\int_0^l g(\xi) \sin \frac{k\pi\xi}{l} d\xi \right) e^{-\left(\left(\frac{ak\pi}{l}\right)^2 + \beta\right)t} \sin \frac{k\pi x}{l}.$$

3)
$$u(x,t) = 1 + t + (e^x - e^{x-t})\sin x + e^{x-4t}\sin 2x$$
.

4)
$$u(x,t) = x - 1 + t^2 + e^{-t}p(x,t),$$

 $p(x,t) = e^{-\frac{\pi^2}{4}t}\cos\frac{\pi x}{2} + \frac{4}{25\pi^2}(1 - e^{-\frac{25\pi^2}{4}t})\cos\frac{5\pi x}{2}.$

5)
$$u(x,t) = (1 - \frac{x}{\pi})e^{-t} + \frac{xt}{\pi} + \frac{1}{2}\cos 2t \sin 2x - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k(1+k^2)} [e^{-t} + k^2 \cos kt - (2k + \frac{1}{k})\sin kt] \sin kx.$$

6)
$$u(x,t) = x + t + \cos\frac{t}{2}\sin\frac{x}{2} - \frac{8}{\pi}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}\cos\frac{(2k+1)t}{2}\sin\frac{(2k+1)x}{2}$$
.

7)
$$u(x,t) = \frac{\beta - \alpha}{2l} x^2 + \alpha x + \Phi_0 + \mu_0 t + \frac{F_0}{2} t^2 + \sum_{k=1}^{\infty} \cos \frac{k\pi x}{l} \times \left\{ \left(\frac{l}{ak\pi} \right)^2 F_k + \left[\Phi_k - \left(\frac{l}{ak\pi} \right)^2 F_k \right] \cos \frac{ak\pi t}{l} + \frac{l\mu_k}{ak\pi} \sin \frac{ak\pi t}{l} \right\},$$

$$F_k = \frac{\varepsilon_k}{l} \int_0^l \left[f(x) + \frac{(\beta - \alpha)a^2}{l} \right] \cos \frac{k\pi x}{l} dx,$$

$$\Phi_k = \frac{\varepsilon_k}{l} \int_0^l \left[\phi(x) - \frac{(\beta - \alpha)x^2}{2l} - \alpha x \right] \cos \frac{k\pi x}{l} dx,$$

$$\mu_k = \frac{\varepsilon_k}{l} \int_0^l \mu_x \cos \frac{k\pi x}{l} dx, \quad k = 0, 1, 2, \dots,$$

$$\varepsilon_0 = 1, \ \varepsilon_k = 2, \ k = 1, 2, \dots$$

8)
$$u(x,t) = 2xt + (2e^t - e^{-t} - 3te^{-t})\cos x$$
.

9)
$$u(x,t) = x \sin t + e^{-2x-t} \left[\frac{4}{7} (1 - \operatorname{ch} \frac{\sqrt{7}t}{2}) \sin x + (4 + 2 \sin \frac{t}{2} - 3 \cos \frac{t}{2}) \sin 3x \right].$$

42.
$$u(x,t) = \frac{2s}{\pi\rho} \sin \frac{2\pi y}{p} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(1+a^2\lambda_k^2)} (e^{-t} - \cos a\lambda_k t + \frac{1}{a\lambda_k} \sin a\lambda_k t) \sin \frac{k\pi x}{s},$$
 $\lambda_k = \frac{\pi\sqrt{k^2p^2+4s^2}}{sp}, \quad \rho$ — поверхностная плотность мембраны.

43.
$$u(x, y, t) = (y + x - xy)t + e^{-26t} \sin 5\pi x \cdot \sin \pi y + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x \cdot \sin \pi x + e^{-26t} \sin 5\pi x + e^{-26t$$

$$+\sum_{k=1}^{\infty}\sum_{n=1}^{\infty}\frac{\alpha_{kn}}{k^2+n^2}\left(1-e^{-(k^2+n^2)t}\right)\sin k\pi x\cdot\sin n\pi y,$$

$$\alpha_{kn}=\frac{4}{kn\pi^2}[(-1)^n+(-1)^k-(-1)^{k+n}].$$

44.
$$u(r,t) = \frac{Q}{6c\rho a^2}(R^2 - r^2) + \frac{2QR^3}{c\rho a^2\pi^3 r} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^3} e^{-\left(\frac{k\pi a}{R}\right)^2 t} \sin\frac{k\pi r}{R}.$$

Указание. Задача приводится к решению уравнения

$$u_t = a^2(u_{rr} + \frac{2}{r}u_r) + \frac{Q}{c\rho}, \quad 0 \le r < R, \ t > 0$$

при условиях

$$u(R,t)=0, \quad u(r,0)=0, \quad u(0,t)$$
 – конечная величина.

45.
$$u(r,t)=\frac{qR}{k}\left(\frac{3a^2}{R^2}t-\frac{3R^2-5r^2}{10R^2}-\frac{2R}{r}\sum_{n=1}^{\infty}\frac{1}{\mu_n^3\cos\mu_n}e^{-\frac{a^2\mu_n^2}{R^2}t}\sin\frac{\mu_n r}{R}\right),$$
 где μ_n – положительные корни уравнения $\operatorname{tg}\mu=\mu.$

Указание. Требуется построить решение следующей задачи

$$u_t=a^2(u_{rr}+rac{2}{r}u_r),\quad 0\leq r< R,\; t>0,$$
 $u(0,t)$ – конечная величина, $u_r(R,t)=rac{q}{k},\quad u(r,0)=0.$

46.
$$Q(t) = 4\pi \int_0^R C(r,t)r^2 dr - \frac{4\pi}{3}R^3C_0 =$$

$$= \frac{4\pi}{3}R^3(C_1 - C_0) \left[1 - \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{k^2} e^{-\left(\frac{k\pi}{R}\right)^2 Dt} \right].$$

Указание. Задача приводится к решению уравнения

$$C_t = D(C_{rr} + \frac{2}{r}C_r), \quad 0 \le r < R, \ t > 0$$

при условиях

$$C(R,t) = C_1, \quad C(r,0) = C_0, \quad C(0,t)$$
 – конечная величина.

47.
$$u(x,y) = A + \frac{A(b-2)x}{2a} - \frac{4Ab}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \frac{sh\frac{(2k+1)\pi x}{b}}{sh\frac{(2k+1)\pi a}{b}} \cdot \cos\frac{(2k+1)\pi y}{b}.$$

48.
$$u(x,y) = \frac{A \operatorname{sh} \frac{\pi(a-x)}{b}}{\operatorname{sh} \frac{\pi a}{b}} \sin \frac{\pi y}{b} + \frac{B \operatorname{sh} \frac{\pi(b-y)}{a}}{\operatorname{sh} \frac{\pi b}{a}} \sin \frac{\pi x}{a}.$$

49.
$$u(x,y) = x(a-x) - \frac{8a^2}{\pi^3} \sum_{k=0}^{\infty} \frac{\sinh\frac{(2k+1)\pi y}{a} - \sinh\frac{(2k+1)\pi(y-b)}{a}}{\sinh\frac{(2k+1)\pi b}{a}} \sin\frac{(2k+1)\pi x}{a}$$
.

50.
$$u(x,y) = \frac{2}{b} \sum_{k=0}^{\infty} \frac{(-1)^k}{\lambda_k^6} \left(\frac{(\lambda_k^2 a^2 + 2) \operatorname{sh} \lambda_k x - 2 \operatorname{sh} \lambda_k (x-a)}{\operatorname{sh} \lambda_k a} - \lambda_k^2 x^2 - 2 \right) \times$$

$$\times \sin \lambda_k y, \quad \lambda_k = \frac{(2k+1)\pi}{2b}.$$

51.
$$u(x,y,z) = \frac{16V}{\pi^2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\sin\frac{(2m+1)\pi x}{a} \sin\frac{(2n+1)\pi y}{b} \operatorname{sh} \omega_{mn}(c-z)}{(2m+1)(2n+1) \operatorname{sh} \omega_{mn}c},$$

 $\omega_{mn} = \pi \sqrt{\frac{(2m+1)^2}{a^2} + \frac{(2n+1)^2}{b^2}}.$

Указание. Задача приводится к решению уравнения $u_{xx} + u_{yy} + u_{zz} = 0$ внутри прямоугольного параллелепипеда при краевых условиях

$$u|_{x=0}=u|_{x=a}=u|_{y=0}=u|_{y=b}=0,\quad u|_{z=0}=V,\quad u|_{z=c}=0.$$

52.
$$u(r,\phi) = \sum_{k=0}^{\infty} f_k \left(\frac{r}{a}\right)^{\frac{\pi k}{\alpha}} \sin \frac{k\pi\phi}{\alpha}, \quad f_k = \frac{2}{\alpha} \int_{0}^{\alpha} f(\phi) \sin \frac{\pi k\phi}{\alpha} d\phi.$$

53.
$$u(r,\phi) = u_1 + \frac{4(u_2 - u_1)}{\pi} \sum_{k=0}^{\infty} \left(\frac{r}{a}\right)^{\frac{(2k+1)\pi}{\alpha}} \frac{\sin(2k+1)\frac{\pi\phi}{\alpha}}{2k+1}.$$

54.
$$u(r,\phi) = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} (\alpha_k \cos k\phi + \beta_k \sin k\phi) \left(\frac{r}{3}\right)^k$$
, $\alpha_0 = \frac{8\pi^2}{2} + 4\pi$, $\alpha_k = \frac{4}{k^2}$, $\beta_k = -\frac{4(\pi+1)}{k}$.

55.
$$u(r,\phi) = \frac{T}{h} + \frac{Qr}{1+Rh}\sin\phi + \frac{Ur^3}{R^2(3+Rh)}\cos3\phi$$
.

56. 1)
$$u(x,y) = x + xy$$
. 2) $u(x,y) = x^2 - y^2 + 2y + R^2$.

3)
$$u(x,y) = 3R^2y - 3x^2y + y^3$$
.

4)
$$u(x,y) = \frac{1}{2}(3x^2 - 3y^2 - R^2)$$

5)
$$u(x,y) = R^2x - x^3 + 3xy^2$$
.

6)
$$u(x,y) = \frac{R}{2} + \frac{1}{2R}(y^2 - x^2) + Rxy$$
.
7) $u(x,y) = R^2 + (x+y)(x-y-1)$.

7)
$$u(x,y) = R^2 + (x+y)(x-y-1)$$

57. 1)
$$u(x,y) = \left(\frac{R}{r}\right)^2 y + 2\left(\frac{R}{r}\right)^4 xy;$$

2)
$$u(x,y) = \left(\frac{R}{r}\right)^4 (x^2 - y^2);$$

3)
$$u(x,y) = \frac{1}{2} \left(\frac{R}{r}\right)^4 (x^2 - y^2) + \frac{R^2}{2} + 1;$$

4)
$$u(x,y) = \frac{R^2}{2} - \frac{1}{2} \left(\frac{R}{r}\right)^4 (x^2 - y^2 + 2xy);$$

5)
$$u(x,y) = \frac{R^2}{2} - \frac{1}{2} \left(\frac{R}{r}\right)^4 (x^2 - y^2) + \left(\frac{R}{r}\right)^2 (x+y);$$

6)
$$u(x,y) = R^2 + \left(\frac{R}{r}\right)^4 (x^2 - y^2) - \left(\frac{R}{r}\right)^2 (x - y).$$

58. 1)
$$u(x,y) = \frac{r^2 - R^2}{4}$$
;

2)
$$u(x,y) = \frac{1}{8}(x^3 + xy^2 - R^2x);$$

3)
$$u(x,y) = \frac{R^2 - x^2}{2}$$
;

4)
$$u(x,y) = \frac{1}{8}(y^3 + x^2y - R^2y + 8);$$

5)
$$u(x,y) = r^2 - R^2 + 1$$
.

- **59.** 1) u(x,y) = const при A = 0. При $A \neq 0$ задача поставлена неправильно.
 - 2) $u(x,y)=\frac{R^2}{2}(x^2-y^2)+{\rm const}$ при $A=-R^2$. При $A\neq -R^2$ задача поставлена неправильно.
 - 3) u(x,y) = Rxy + const.
 - 4) $u(x,y)=-\frac{AR}{4}(x^2-y^2)+{\rm const}$ при $B=\frac{AR^2}{2}$. При $B\neq\frac{AR^2}{2}$ задача поставлена неправильно.
 - 5) $u(x,y) = \frac{AR}{2}(x^2 y^2) + Ry + \text{const}$ при B = A. При $B \neq A$ задача поставлена неправильно.

60.
$$u(r,\phi) = \frac{r^2 \sin 2\phi}{R^2 - R_1^2} + \frac{r^3 \cos 3\phi}{R^3 - R_1^3} + \text{const.}$$

61.
$$u(r,\phi) = \frac{RR_1 \sin \phi}{(R_1 - R)r} + \frac{3R^2 R_1^2 \cos 2\phi}{2(R_1^2 - R^2)r^2} + \text{const}$$
 при $A = \frac{3}{2}$.

62.
$$u(r,\phi) = \sum_{n=1}^{\infty} \left(A_n r^{\frac{\pi n}{a}} + B_n r^{-\frac{\pi n}{a}} \right) \sin \frac{\pi n \phi}{\alpha},$$

$$A_n = \frac{1}{d} \left(b^{\frac{\pi n}{\alpha}} F_n - a^{\frac{\pi n}{\alpha}} f_n \right), \quad B_n = \frac{1}{d} \left(b^{\frac{\pi n}{\alpha}} f_n - a^{\frac{\pi n}{\alpha}} F_n \right) (ab)^{\frac{\pi n}{\alpha}},$$

$$d = b^{\frac{2\pi n}{\alpha}} - a^{\frac{2\pi n}{\alpha}}, \quad F_n = \frac{2}{\alpha} \int_{0}^{\alpha} F(\phi) \sin \frac{\pi n \phi}{\alpha} d\phi, \quad f_n = \frac{2}{\alpha} \int_{0}^{\alpha} f(\phi) \sin \frac{\pi n \phi}{\alpha} d\phi.$$

63.
$$u(r,\phi) = \left(-\frac{4}{5}r + \frac{36}{5}r^{-1}\right)\cos\phi + \left(\frac{9}{5}r - \frac{36}{5}r^{-1}\right)\sin\phi.$$

64.
$$u(r,\phi) = \frac{1}{85}(17r^3 - 49r^2 + \frac{32}{r^2})\cos 2\phi$$
.

Указание. Решение можно искать в виде

$$u(r,\phi) = v(r,\phi) + w(r,\phi),$$

где $v = \frac{1}{5}r^3\cos2\phi$, а w – решение задачи

$$\Delta w = 0$$
, $w(1, \phi) = -\frac{\cos 2\phi}{5}$, $w_r(2, \phi) = -\frac{12}{5}\cos 2\phi$.

65.
$$u(x,y) = xy$$
.

66.
$$u(r,\phi) = 1 + \log_2 r + \frac{1}{9} (3r^2 - 7r + 4r^{-1}) \sin \phi + (\frac{1}{2}r \ln r - \frac{\ln 4}{3}(r - r^{-1})) \cos \phi$$
.

§5

67. a) 1)
$$u(x,t) = \frac{1}{2}\phi(x-at) + \frac{1}{2}\phi(x+at) + \frac{1}{2a}\int_{x-at}^{x+at} \mu(\xi) d\xi$$
.

2)
$$u(x,t) = \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi d\tau.$$

3)
$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \phi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi$$
.

6) 1)
$$u(x,t) = \frac{x}{2a\sqrt{\pi}} \int_0^t \frac{\mu(\tau)}{(t-\tau)^{3/2}} e^{-\frac{x^2}{4a^2(t-\tau)}} d\tau$$
.

2)
$$u(x,t) = -\frac{a}{\sqrt{\pi}} \int_{0}^{t} \frac{\mu(\tau)}{\sqrt{t-\tau}} e^{-\frac{x^2}{4a^2(t-\tau)}} d\tau.$$

3)
$$u(x,t) = \frac{1}{2a\sqrt{\pi}} \int_0^t \frac{d\tau}{\sqrt{t-\tau}} \int_0^\infty \left[e^{-\frac{(x-\xi)^2}{4a^2(t-\tau)}} - e^{-\frac{(x+\xi)^2}{4a^2(t-\tau)}} \right] f(\xi,\tau) d\xi.$$

$$\mathrm{B)} \ \ 1) \ u(x,y,t) = \tfrac{1}{4a^2\pi t} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2+(y-\eta)^2}{4a^2t}} \phi(\xi,\eta) \, d\xi \, d\eta.$$

2)
$$u(x,y,t) = \frac{1}{4a^2\pi} \int_0^t \frac{d\tau}{t-\tau} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2+(y-\eta)^2}{4a^2t}} f(\xi,\eta) d\xi d\eta.$$

$$\text{r) } 1) \ u(x,y,t) = \\ = \frac{1}{4a^2\pi t} \int_{-\infty}^{+\infty} d\xi \int_0^{\infty} \left[e^{-\frac{(x-\xi)^2 + (y-\eta)^2}{4a^2t}} - e^{-\frac{(x-\xi)^2 + (y+\eta)^2}{4a^2t}} \right] f(\xi,\eta) \, d\eta.$$

2)
$$u(x,y,t) = \frac{y}{4a^2\pi} \int_0^t \frac{d\tau}{(t-\tau)^2} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2+y^2}{4a^2(t-\tau)}} f(\xi,\tau) d\xi.$$

3)
$$u(x, y, t) =$$

$$= \frac{1}{4a^2\pi t} \int_{-\infty}^{+\infty} d\xi \int_{0}^{\infty} \left[e^{-\frac{(x-\xi)^2 + (y-\eta)^2}{4a^2t}} + e^{-\frac{(x-\xi)^2 + (y+\eta)^2}{4a^2t}} \right] f(\xi, \eta) d\eta.$$

4)
$$u(x,y,t) = -\frac{1}{2\pi} \int_0^t \frac{d\tau}{t-\tau} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2 + y^2}{4a^2(t-\tau)}} f(\xi,\tau) d\xi.$$

$$\begin{array}{l} \mu(x,y,t) = \\ = \frac{y}{8\pi a^2} \int_0^t \int_0^\infty \frac{1}{(t-\tau)^2} \left[e^{-\frac{(x-\xi)^2 + y^2}{4a^2(t-\tau)}} + e^{-\frac{(x+\xi)^2 + y^2}{4a^2(t-\tau)}} \right] g(\xi,\tau) \, d\xi \, d\tau - \\ \end{array}$$

$$-\frac{1}{2a\pi}\int_0^t\int_0^\infty\frac{1}{(t-\tau)^{3/2}}\left[e^{-\frac{x^2+(y-\eta)^2}{4a^2(t-\tau)}}-e^{-\frac{x^2+(y+\eta)^2}{4a^2(t-\tau)}}\right]f(\eta,\tau)\,d\eta\,d\tau.$$

68. 1)
$$u(x,y) = -\frac{1}{a} \int_0^x f(x-\xi) \sin a\xi \, d\xi$$
.

2)
$$u(x,y) = x + y \cos x - \sin x + \frac{1}{2}x \sin x$$
.

3)
$$u(x,t) = t\cos x + \frac{1}{2}x\sin x + \int_0^x f(\xi)\sin(x-\xi)\,d\xi.$$

4)
$$u(x,y) = \begin{cases} \phi(x-t) + \mu(t), & x-t > 0, \\ \mu(t), & x-t < 0. \end{cases}$$

$$5) u(x,t) = \begin{cases} \varphi_0(x-y) + y\varphi_0'(x-y) + y\varphi_1(x-y) + \\ + \int_{x-y}^x f(\xi, y-x+\xi)(x-\xi) d\xi, & x > y; \\ \psi_0(y-x) + x\psi_0'(y-x) + x\psi_1(y-x) + \\ + \int_{y-x}^y f(x-y+\xi,\xi)(y-\xi) d\xi, & x < y. \end{cases}$$

6)
$$u(x,t) = (B-A) \cdot erf\left(\frac{x}{2\sqrt{t}}\right) + A.$$

Указание. При построении оригинала воспользуйтесь следующим преобразованием:

$$\frac{1}{p}e^{-\alpha\sqrt{p}} \leftrightarrow erf\left(\frac{\alpha}{2\sqrt{t}}\right), \quad \alpha > 0.$$

$$7) \ u(x,y) = \begin{cases} \phi(x-y)\sin y + \\ + \int_{x-y}^{x} f(t,y-x+t)\sin(x-t) \, dt, & x > y \\ \mu(y-x)\cos x + \mu'(y-x)\sin x + \\ + \int_{y-x}^{y} f(x-y+t,t)\sin(y-t) \, dt, & x < y. \end{cases}$$

8)
$$u(x,t) = \frac{\sin \omega x \cdot \sin \omega t}{\omega \cos \omega} + 2\omega \sum_{k=1}^{\infty} (-1)^k \frac{\sin \omega_k x \sin \omega_k t}{\omega_k (\omega_k^2 - \omega^2)},$$
$$\omega_k = \frac{2k-1}{2}\pi, \quad k = 1, 2, \dots$$

69.
$$u(x,t) = \frac{1}{2a\sqrt{\pi}} \int_0^t \frac{q(t-\tau)}{\tau^{3/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau.$$

70.
$$U_1(x,p) = \frac{u_o}{p} - \frac{u_o a \operatorname{ch} (ax\sqrt{p})}{p(\operatorname{sh} (al\sqrt{p}) + a \operatorname{ch} (al\sqrt{p}))}, \quad 0 \le x \le l,$$

$$U_2(x,p) = \frac{u_o \operatorname{sh} (al\sqrt{p})}{p(\operatorname{sh} (al\sqrt{p}) + a \operatorname{ch} (al\sqrt{p}))} e^{-(x-l)\sqrt{p}}, \quad l \le x < \infty,$$

$$u(x,t) = \begin{cases} u_1(x,t), & 0 \le x \le l, \\ u_2(x,t), & l \le x < \infty. \end{cases}$$

§6

72. 1)
$$u(x,t) = 1 + \frac{t^2}{2} + e^t$$
.

2)
$$u(x,t) = \frac{1}{\sqrt{4t+1}}e^{-\frac{x^2}{4t+1}} + 1 - \cos t$$
.

3)
$$u(x,t) = \frac{1}{\sqrt{t+1}} e^{\frac{t+2x-x^2}{t+1}}$$
.

73.
$$u(x,y,t) = \frac{1}{\sqrt{t+1}}e^{-\frac{(x-y)^2}{t+1}} + \frac{t}{8}$$
.

75.
$$u(x,y) = \frac{1}{2a\sqrt{\pi t}} \int_0^\infty f(\xi) \left[e^{-\frac{(x-\xi)^2}{4a^2t}} - e^{-\frac{(x+\xi)^2}{4a^2t}} \right] d\xi.$$

76.
$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \times$$

$$\times \int_0^\infty \left\{ f(\xi) \left[e^{-\frac{(x-\xi)^2}{4a^2t}} + e^{-\frac{(x+\xi)^2}{4a^2t}} \right] - 2he^{-h\xi} \int_0^\xi e^{h\eta} f(\eta) \, d\eta \right\} d\xi.$$

Указание. Решить следующую краевую задачу:

$$u_t = a^2 u_{xx}, \quad x > 0, t > 0,$$

 $u_x - hu|_{x=0} = 0, \quad u(x,0) = f(x).$

77.
$$u_1(x,t) = \frac{u_0\sigma}{1+\sigma} (1 + erf\left(\frac{x}{2a_1\sqrt{t}}\right), \quad (x < 0),$$
 $u_2(x,t) = \frac{u_0}{1+\sigma} (\sigma + erf\left(\frac{x}{2a_2\sqrt{t}}\right), \quad (x > 0),$
где $\sigma = \frac{k_2a_1}{k_1a_2}.$

Указание. Задача приводится к нахождению решений уравнений

$$\frac{\partial u_1}{\partial t} = a_1^2 \frac{\partial^2 u_1}{\partial x^2} \quad (x < 0), \quad \frac{\partial u_2}{\partial t} = a_2^2 \frac{\partial^2 u_2}{\partial x^2} \quad (x > 0),$$

удовлетворяющих условиям

$$u_1(0,t) = u_2(0,t), \quad k_1 \frac{\partial u_1(0,t)}{\partial x} = k_2 \frac{\partial u_2(0,t)}{\partial x},$$

$$u_1(x,0) = 0, \quad u_2(x,0) = u_0,$$

где $a_i^2 = \frac{c_i \rho_i}{k_i}$, c_i – коэффициент теплоемкости, k_i – коэффициент внутренней теплопроводности, ρ_i – плотность вещества стержня, (i=1,2).

Литература

- 1. Белов В.В., Воробьев Е.М. Сборник задач по дополнительным главам математической физики. М.: Высшая школа, 1978.
- 2. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям математической физики. М.: Наука, 1985.
- 3. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. М.: Наука, 1972.
- 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988.
- 5. Годунов С.К., Золотарева Е.В. Сборник задач по уравнениям математической физики. Новосибирск, 1974.
- 6. Демидович Б.П. Сборник задач и упражнений по математическому анализу, М.: Наука, 1990.
- 7. Дормодихина Н.Ф. и др. Решение задач математической физики. Воронеж, 1980.
- 8. Ефимов А.В. Математический анализ (специальные разделы). Ч.І. Общие функциональные ряды и их приложение. М.: Высшая школа, 1980.
- 9. Косарев А.А. и др. Решение задач по методам математической физики. Воронеж, 1982.
- 10. Краснов М.А., Киселев А.И., Макаренко Г.И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука, 1981.
- 11. Математическая физика: Энциклопедия. М., 1998.
- 12. Очан Ю.С. Сборник задач по методам математической физики. М., 1973.
- 13. Сборник задач по уравнениям математической физики. Саратов. 1989.
- 14. Сборник задач по уравнениям математическ
лй физики /Под ред. В.С. Владимирова. М.: Наука, 1982.
- 15. Самойленко А.М., Кривошея С.А., Перестюк Н.А. Дифференциальные уравнения: примеры и задачи. М.: Высшая школа, 1989.
- 16. Сидоров Ю.В., Федорюк М.В., Шабунини М.И. Лекции по теории функций комплексного переменного. М.: Наука, 1989.
- 17. Смирнов М.М. Задачи по уравнениям математической физики. М.: Наука, 1968.

- 18. Соболев Л.В. Уравнения математической физики. М.: Наука, 1992.
- 19. Стеклов В.Н. Основные задачи математической физики. М.: Наука, 1983.
- 20. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.
- 21. Шелковников Ф.А., Такайшвили К.Г. Сборник упражнений по операционному исчислению, М.: Высшая школа, 1976.

Содержание

Предислов	ле 3
Глава I	Основы операционного исчисления 5
§ 1	Понятия оригинала и изображения по Лапласу.
	Свойства преобразования Лапласа 5
§2	Восстановление оригинала по изображению
§ 3	Применение преобразования Лапласа к решению
	дифференциальных уравнений и их систем
§ 4	Применение преобразования Лапласа к решению
	дифференциальных уравнений с запаздывающим
	аргументом
§ 5	
	интегральных уравнений и их систем
Глава II	. Классификация уравнений с частными производ-
	ными. Канонический вид уравнений с частными
	производными второго порядка
§]	. Дифференциальные уравнения с частными про-
0.6	изводными
82	2 Простейшие дифференциальные уравнения с частными производными. Общее решение
86	частными производными. Оощее решение 40 В Дифференциальные уравнения с частными про-
8.	изводными первого порядка
84	Классификация линейных уравнений с частными
3	производными второго порядка
88	Приведение к каноническому виду линейных
· ·	уравнений с частными производными второго по-
	рядка с двумя независимыми переменными 68
§6	В Приведение к каноническому виду линейных
	уравнений с частными производными второго по-
	рядка с $n(n > 2)$ независимыми переменными 76
§ 7	Иетод характеристик
Глава III	. Математическое описание процессов, изучаемых
	методами математической физики. Вывод урав-
	нений и постановка краевых задач
§ I	Вывод уравнений

§2	Постановка краевых задач
Глава IV.	Свойства гармонических функций. Краевые зада-
	чи для уравнений эллиптического типа 104
§1	Уравнение Лапласа. Свойства гармонических
	функций
§2	Простейшие краевые задачи для уравнений Ла-
	пласа и Пуассона
Γ лава ${f V}$.	Аналитические методы решения краевых задач
	математической физики
§1	Преобразование краевых задач
§2	Формула Даламбера для волнового уравнения.
	Метод продолжения
§3	Задача Штурма-Лиувилля. Свойства собствен-
	ных функций
§4	Метод разделения переменных (Метод Фурье) 132
§ 5	Метод интегральных преобразований
§ 6	Задача Коши для уравнения параболического ти-
	па. Формула Пуассона
Ответы и указания	
Литература	

Для заметок

Для заметок

Для заметок

Уравнения математической физики

Сборник примеров и упражнений для студентов математического факультета ПетрГУ

Составители:

Рогов Александр Александрович, Семенова Елена Евгеньевна, Чернецкий Владимир Ильич, Щеголева Людмила Владимировна

Редактор Л.В.Каретина Компьютерная верстка Е.Е.Семеновой

ЛР ИД №02969 от 06.10.2000 г. Гигиенический сертификат №10. КЦ.34.953.П.00136.03.99 от 05.03.99 г. Подписано в печать 15.02.2001. Формат $60 \times 84^{-1}/_{16}$. Бумага офсетная. Офсетная печать. 10,7 уч.-изд.л. 58,5 усл.кр-отт. Тираж 250 экз. Изд. №1

Петрозаводский государственный университет Типография Издательства Петрозаводского государственного университета

185640, Петрозаводск, пр.Ленина, 33