Лекция 5

Наблюдаемость линейных систем

Известно, что управление системой может выполняться по программе или по принципу обратной связи. Для практической реализации управления по принципу обратной связи необходимо знать состояние системы в каждый конкретный момент времени. Однако обычно оказывается, что не все фазовые координаты системы доступны измерению. Поэтому естественно рассмотреть вопрос о возможности полного описания поведения фазовых координат системы по результатам неполного наблюдения.

§1. Наблюдаемость линейных нестационарных систем

Пусть управляемая система описывается уравнением:

$$\dot{x}(t) = A(t)x + B(t)u, \quad 0 < t < T,$$
 (1)

в которой A(t) и B(t) — непрерывные матрицы размерностей $n\times n$ и $n\times r$ соответственно. Пусть для системы (1) множество допустимых управлений состоит из векторных функций u(t), принадлежащих пространству $L_2^r(0,T), T$ — произвольное, но фиксированное число.

Обозначим через $y=\{y_1,y_2,...,y_m\}$ – вектор, компоненты которого являются линейными комбинациями фазовых координат $x_i,$ $i=\overline{1,n},$ и компонент управления $u_j,\ j=\overline{1,r},$ т. е. будем считать, что

$$y = C(t)x + D(t)u, (2)$$

где C(t) и D(t) – непрерывные матрицы размерности $m \times n$ и $m \times r$ соответственно.

Будем предполагать, что управление u=u(t) задано и компоненты y_i вектора y доступны наблюдению на [0,T] и, следовательно, по результатам наблюдения известны функции $y_i=y_i(t),$ $i=\overline{1,m},$ $t\in[0,T].$

Основная задача наблюдения в этом случае состоит в том, что по полученным результатам наблюдения (т. е. известны функции

y(t)) определить значения функции x(t) при всех $t \in [0,T]$, являющейся решением уравнения (1) при u = u(t).

Это решение можно представить в виде:

$$x(t) = K(t,0)x^{0} + \int_{0}^{t} K(t,s)B(s)u(s) ds,$$
 (3)

где x^0 – неизвестное начальное состояние.

Так как K(t,s), B(t) и u(t) считаются известными, то второе слагаемое в (3) оказывается известной функцией t. Неизвестным является слагаемое $K(t,0)x^0$.

Можно показать, что для решения вопросов наблюдаемости достаточно рассмотреть уравнения (1) и (2) при u=0. Действительно, сделаем замену

$$x(t) = z(t) + \int_0^t K(t, s)B(s)u(s) ds.$$
 (*)

Подставив ее в (1), получим

$$\dot{z}(t) + \int_{0}^{t} \frac{\partial K(t,s)}{\partial t} B(s)u(s) ds + K(t,t)B(t)u(t) =$$

$$= A(t)z(t) + A(t)\int\limits_0^t K(t,s)B(s)u(s)\,ds + B(t)u.$$

Так как $\frac{\partial K(t,s)}{\partial t}=A(t)K(t,s)$ и $K(t,t)=\Phi(t)\Phi^{-1}(t)=E$, где $\Phi(t)$ – фундаментальная матрица решений уравнения $\dot{x}=A(t)x$, то будем иметь

$$\dot{z} + A(t) \int_{0}^{t} K(t,s)B(s)u(s) ds + B(t)u =$$

$$= A(t)z + A(t)\int_{0}^{t} K(t,s)B(s)u(s) ds + B(t)u.$$

Таким образом, получили

$$\dot{z} = A(t)z$$
.

Подставив (*) в (2), получим

$$y = C(t)\left(z(t) + \int_0^t K(t,s)B(s)u(s)\,ds\right) + D(t)u.$$

Отсюда, введя обозначение Y(t):

$$Y(t) = y(t) - D(t)u - C(t) \int_{0}^{t} K(t, s)B(s)u(s) ds,$$

получим уравнение

$$Y(t) = C(t)z(t).$$

Таким образом, основную задачу наблюдения для линейной системы можно сформулировать следующим образом.

По данным наблюдения известна вектор-функция $y(t), t \in [0,T].$ Известно также, что она представима в виде

$$y(t) = C(t)x(t), (4)$$

где C(t) – заданная непрерывная матрица размерности $m \times n$. Требуется найти вектор x^0 начального состояния фазового вектора x(t), определяемого уравнением:

$$\dot{x} = A(t)x. \tag{5}$$

Определение 1. Если любое начальное состояние x^0 системы (5) можно определить по известной на [0,T] функции y(t), представимой в виде (4), то система (4), (5) называется вполне наблюдаемой на этом отрезке времени.

Пусть $h_i(t)$ — i-й столбец матрицы C(t)K(t,0). Размерность вектора $h_i(t)$, очевидно, равна m, а количество этих векторов равно n.

Теорема 1. Для того чтобы система (4), (5) была вполне наблюдаемой на отрезке $0 \le t \le T$, необходимо и достаточно, чтобы вектор-функции $h_1(t), h_2(t), ..., h_n(t)$ были линейно независимы на этом отрезке.

Доказательство. Достаточность. Пусть вектор-функции $h_1(t), h_2(t), ..., h_n(t)$ линейно независимыми на отрезке [0, T]. Решение уравнения (5) можно представить в виде

$$x(t) = K(t,0)x^0. (6)$$

Тогда для вектора наблюдаемых величин (4) будем иметь

$$y(t) = C(t)K(t,0)x^{0}.$$

Обе части этого равенства умножим слева на матрицу $K^*(t,0)C^*(t)$ и полученный результат проинтегрируем на отрезке [0,T]. Будем иметь

$$z(T) = M(T)x^0,$$

где

$$z(T) = \int_{0}^{T} K^{*}(t, 0)C^{*}(t)y(t) dt,$$

$$M(T) = \int_{0}^{T} K^{*}(t, 0)C^{*}(t)C(t)K(t, 0) dt.$$

Матрица M(T) – матрица Грама системы линейно независимых векторов $h_i(t)$, $i=\overline{1,n}$, и ее определитель отличен от нуля. Следовательно, $x^0=M^{-1}(T)z(T)$. Тем самым по известной функции $y(t),\ t\in[0,T]$, найдено начальное состояние системы. А по формуле (6) теперь можно определить решение системы (5).

Необходимость. Пусть система (4), (5) вполне наблюдаема на [0,T], т. е. начальное состояние может быть определено по известной на [0,T] функции y(t). Докажем, что вектор-функции $h_1(t),h_2(t),...,h_n(t)$ линейно независимы.

Предположим противное. Пусть $h_i(t),\ i=\overline{1,n},$ линейно зависимы на [0,T]. Тогда матрица M(T) является вырожденной и существует **ненулевой** вектор $\alpha\in R^n$ такой, что скалярное произведение векторов α и $M(T)\alpha$ равен 0:

$$(\alpha, M(T)\alpha) = 0$$

(т. к. существует ненулевой вектор, который является решением уравнения $M(T)\alpha=0$). Возьмем начальное состояние системы (5) $x(0)=x^0=\alpha$. Ему соответствует вектор-функция y(t):

$$y(t) = C(t)K(t,0)\alpha.$$

Тогда будем иметь

$$\int_{0}^{T} y^{*}(t)y(t) dt = \int_{0}^{T} \alpha^{*}K^{*}(t,0)C^{*}(t)C(t)K(t,0)\alpha dt = (\alpha, M(T)\alpha) = 0.$$

Следовательно, $y(t) \equiv 0$, $t \in [0,T]$. Однако у вполне наблюдаемой системы при $x(t) \neq 0$ наблюдаемая вектор-функция y(t) не может быть тождественно равной нулю. Полученное противоречие доказывает, что вектор-функции $h_1(t), h_2(t), ..., h_n(t)$ являются линейно независимыми на отрезке [0,T]. \square

§2. Наблюдаемость линейных стационарных систем

Рассмотрим стационарную систему

$$\dot{x} = Ax,\tag{7}$$

$$y = Cx, (8)$$

где A и C – постоянные матрицы размерностей $n \times n$ и $m \times n$ соответственно.

Попытаемся найти условия полной наблюдаемости этой системы на произвольном заданном отрезке времени $0 \leqslant t \leqslant T$, выраженные непосредственно через матрицы A и C.

Любое решение уравнения (7) можно представить в виде

$$x(t) = e^{At}x^0, (9)$$

где x^0 –начальное значение фазового вектора системы в момент времени t=0. Так как для матричной экспоненты имеем

$$e^{At} = \sum_{k=0}^{n-1} \alpha_k(t) A^k,$$

то из (8) и (9) получим

$$y(t) = C \cdot \sum_{k=0}^{n-1} \alpha_k(t) A^k \cdot x^0.$$

Умножая полученное соотношение на $\alpha_i(t)$ и интегрируя полученный результат в пределах от 0 до T, будем иметь

$$\int_{0}^{T} \alpha_{i}(t)y_{j}(t) dt = \sum_{k=0}^{n-1} \left(\int_{0}^{T} \alpha_{i}(t)\alpha_{k}(t) dt \right) C_{j}A^{k}x^{0},$$

$$i = \overline{0, n-1}, \ j = \overline{1, m},$$

$$(10)$$

где $y_j(t)-j$ -я компонента вектора y(t), а C_j-j -я строка матрицы C, т. е. $C_j=(C_{j1},C_{j2},...,C_{jn}).$

Введя обозначение для скалярного произведения функций a(t) и b(t):

$$(a,b) = \int_{0}^{T} a(t)b(t) dt,$$

равенство (10) можно записать в виде

Определитель матрицы системы из коэффициентов (α_i, α_k) при $C_j A^k x^0$ отличен от нуля, так как является определителем Грама линейно независимых функций $\alpha_0, \alpha_1, ..., \alpha_{n-1}$. Следовательно, система (11) имеет единственное решение:

$$C_j x^0 = \gamma_j^1, \ C_j A x^0 = \gamma_j^2, \ \dots \ , \ C_j A^{n-1} x^0 = \gamma_j^{n-1}, \ j = \overline{1, m}.$$

Полученный набор условий может быть записан в матричной форме:

$$Nx^0 = \gamma$$
,

где матрица N составлена из строк матриц $C, CA, CA^2, ..., CA^{n-1}$:

$$N = \begin{pmatrix} C \\ CA, \\ ... \\ CA^{n-1} \end{pmatrix}, \tag{12}$$

а γ – вектор-столбец $\{\gamma_1^0,...,\gamma_1^{n-1},...,\gamma_m^0,...,\gamma_m^{n-1}\}$. Количество строк в матрице N и элементов в столбце γ равно mn.

Теорема 2. Для того чтобы система (7), (8) была вполне наблюдаемой на отрезке $0 \le t \le T$, необходимо и достаточно, чтобы ранг матрицы (12) был равен n.

Литература

- 1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1989. 624 с.
- 2. Егоров А. И. Основы теории управления. М.: ФИЗМАТЛИТ, $2007.-504~\mathrm{c}.$
- 3. Гантмахер Ф. Р. Теория матриц. М.: ФИЗМАТЛИТ, 2004. 560 с.
- 4. Жабко А. П., Прасолов А. В., Харитонов В. Л. Сборник задач и упражнений по теории управления: стабилизация программных движений. М.: Высш. школа, 2003. 286 с.
- 5. Мороз А. И. Курс теории систем. М.: Высш. школа, 1987. 304.
- 6. Егоров А. И. Обыкновенные дифференциальные уравнения с приложениями. М.: ФИЗМАТЛИТ, 2003. 384 с.
- 7. Заика Ю. В. Дифференциальные уравнения. Курс лекций. Петрозаводск: КарНЦ РАН, 2012. 215 с.