Занятие № 2

Линейные операции над векторами. Скалярное, векторное и смешанное произведения

- 1. В треугольнике ABC дано: $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, точка M середина стороны BC. Выразить вектор \overrightarrow{AM} через векторы \overrightarrow{a} и \overrightarrow{b} .
- 2. Даны две точки $A_{\!\scriptscriptstyle 1}(3;-4;1)$ и $A_{\!\scriptscriptstyle 2}(4;6;-3)$. Найти координаты вектора $\vec a=\overrightarrow{A_{\!\scriptscriptstyle 1}A_{\!\scriptscriptstyle 2}}$.
- 3. Даны три последовательные вершины параллелограмма $A_{\rm l}(1;-2;3),$ $B(3;2;1),\ C(6;4;4).$ Найти ее четвертую вершину D.
- **4.** Разложить вектор $\vec{c} = (9;4)$ по векторам $\vec{a} = (1;2)$ и $\vec{b} = (2;-3)$.
- 5. Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{2\pi}{3}$. Зная, что $|\vec{a}| = 10$ и $|\vec{b}| = 2$, вычислите $(\vec{a} + 2\vec{b}) \cdot (3\vec{a} \vec{b})$.
- 6. Дано $|\vec{a}| = 2$, $|\vec{b}| = 1$ и угол между векторами $\varphi = \frac{\pi}{3}$. Найти модуль вектора $\vec{c} = 2\vec{a} 3\vec{b}$.
- 7. Проверить, могут ли векторы $\vec{a}=7\vec{i}+6\vec{j}-6\vec{k},\ \vec{b}=6\vec{i}+2\vec{j}+9\vec{k}$ быть ребрами куба. Если да, то найти третье ребро куба.
- 8. Даны вершины треугольника $A(2;3;-1),\ B(4;1;-2)$ и C(1;0;2). Найти внутренний угол при вершине С.
- 9. Показать, что четырехугольник с вершинами A(-5;3;4), B(-1;-7;5), C(6;-5;-3) и D(2;5;-4) есть квадрат.
- 10. Даны два вектора \bar{a} и \bar{b} , для которых $|\bar{a}|=2,$ $|\bar{b}|=6,$ $\varphi=(\widehat{\bar{a}},\widehat{\bar{b}})==\frac{5}{6}\pi.$ Найти
 - $\mathbf{a)} \ \bar{a} \times \bar{b};$
 - 6) $|(2\bar{a}+3\bar{b})\times(\bar{a}-4\bar{b})|$.

- 11. Доказать, что четыре точки $A_1(3;5;1)$, $A_2(2;4;7)$, $A_3(1;5;3)$, $A_4(4;4;5)$ лежат в одной плоскости.
- 12. Даны вершины пирамиды A(5;1;-4), B(1;2;-1), C(3;3;-4), S(2;2;2). Найти длину высоты, опущенной из вершины S на грань ABC.
- 13. Найти объем параллелепипеда, построенного на векторах $\bar{a}=(1;-2;1), \, \bar{b}=(3;2;1), \, \bar{c}=(1;0;-1).$
- 14. Найти высоту параллелепипеда, построенного на векторах $\bar{a}=(2;1;-3),\,\bar{b}=\bar{i}+2\bar{j}+\bar{k},\,\bar{c}=(1;-3;1),$ опущенную на грань, построенную на векторах \bar{b} и \bar{c} .
- 15. Найти объем треугольной призмы, построенной на векторах $\bar{a}=(1;2;3),\,\bar{b}=(2;4;1),\,\bar{c}=(2;-1;0).$

Домашнее задание

Д-1.

Разложить вектор $\bar{c}=(9;4)$ по векторам \bar{a} и $\bar{b},$ если $\bar{a}=(1;2)$ и $\bar{b}=2\bar{i}-3\bar{j}.$

Д-2.

Найти вектор \bar{d} , зная, что $\bar{d}\perp \bar{a}$, $\bar{d}\perp \bar{b}$, где $\bar{a}=(2;3;-1)$, $\bar{b}=(1;-2;3)$ и $\bar{d}\cdot(2\bar{i}-\bar{j}+\bar{k})=-6$.

Д-3.

Найти площадь параллелограмма, построенного на векторах $\bar{a}=3\bar{p}+\bar{q}$ и $\bar{b}=\bar{p}-2\bar{q}$, где $|\bar{p}|=4$, $|\bar{q}|=1$, $(\widehat{\bar{p}},\overline{\bar{q}})=\frac{\pi}{4}$.

Д-4.

Дана пирамида с вершинами $A_1(7;2;4)$, $A_2(7;-1;-2)$, $A_3(3;3;1)$, $A_4(-4;2;1)$. Найти:

- а) угол между ребрами A_1A_2 и A_1A_4 ;
- б) объем пирамиды;
- в) длину высоты, опущенной на грань $A_1A_2A_3$.