КОНТРОЛЬНАЯ РАБОТА №5 по теме: «Функции многих переменных»

Пример 1. Найти и изобразить на плоскости область определения функции $u = \arcsin(y/x)$.

Решение. Область определения данной функции состоит из точек плоскости, координаты x и y которых удовлетворяют неравенству $-1\leqslant \frac{y}{x}\leqslant 1$, равносильному совокупности

$$\begin{cases}
 x > 0, \\
 -x \le y \le x, \\
 x < 0, \\
 x \le y \le -x.
\end{cases}$$

Построим область определения на плоскости xOy. Проведем прямые y=x и y=-x, ограничивающие искомую область. В полуплоскости x>0 выберем произвольную точку, например A(1;0). Так как ее координаты $x=1,\ y=0$ удовлетворяют неравенству $-x\leqslant y\leqslant x$, то угол, образованный прямыми y=x и y=-x, содержащий положительную полуось Ox, является графическим изображением системы неравенств

$$\begin{cases} x > 0, \\ -x \leqslant y \leqslant x. \end{cases}$$

Аналогично, выбрав в полуплоскости x < 0 точку B(-1;0), убеждаемся, что она удовлетворяет системе

$$\begin{cases} x < 0, \\ x \leqslant y \leqslant -x. \end{cases}$$

Следовательно, угол, образованный прямыми y=-x и y=x, содержащий отрицательную полуось Ox (без точки O),

является графическим изображением решений последней системы неравенств.

Пример 2. Найти дифференциал второго порядка функции $z=2x^3y-7xy^2.$

Решение. Применяя правила дифференцирования функции одной переменной, найдем частную производную по x, рассматривая y как постоянную величину:

$$\frac{\partial z}{\partial x} = 6x^2y - 7y^2.$$

Аналогично, расматривая x как величину постоянную, найдем частную производную по y:

$$\frac{\partial z}{\partial y} = 2x^3 - 14xy.$$

Далее найдем частные производные второго порядка:

$$\begin{split} \frac{\partial^2 z}{\partial x^2} &= \frac{\partial}{\partial x} (6x^2y - 7y^2) = 12xy, & \frac{\partial^2 z}{\partial y^2} &= -14x; \\ \frac{\partial^2 z}{\partial x \partial y} &= \frac{\partial}{\partial x} (2x^3 - 14xy) = 6x^2 - 14y, & \frac{\partial^2 z}{\partial y \partial x} &= 6x^2 - 14y. \end{split}$$

Подставляя найденные производные в формулу второго дифференциала функции z(x,y) в точке M(x,y)

$$d^2z(M) = \frac{\partial^2 z}{\partial x^2} dx^2 + 2 \frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} dy^2,$$

получим:

$$d^2z(M) = 12xy dx^2 + (12x^2 - 28y) dxdy - 14x dy^2.$$

Пример 3. Написать уравнение касательной плоскости к эллипсоиду $x^2+y^2/2+z^2=1$, которая параллельна плоскости x+y-z=0.

Решение. Уравнение касательной плоскости к поверхности, заданной уравнением F(x,y,z)=0, в точке $M_0(x_0;y_0;z_0)$ имеет вид

$$F'_{x}(M_{0})(x-x_{0}) + F'_{y}(M_{0})(y-y_{0}) + F'_{z}(M_{0})(z-z_{0}) = 0.$$

Пусть $M_0(x_0; y_0; z_0)$ — точка на поверхности эллипсоида, в которой касательная плоскость параллельна плоскости x+y-z=0. Так как $F(x,y,z)=x^2+y^2/2+z^2-1$, то $F_x'(M_0)=2x_0,\ F_y'(M_0)=y_0,\ F_z'(M_0)=2z_0,\$ и уравнение касательной плоскости к поверхности эллипсоида в точке M_0 имеет вид

$$2x_0(x - x_0) + y_0(y - y_0) + 2z_0(z - z_0) = 0.$$

Из условия параллельности плоскостей следует коллинеарность их нормалей $\vec{n}_1(2x_0;y_0;2z_0)$ и $\vec{n}_2(1;1;-1)$ в точке M_0 , то есть

$$\frac{2x_0}{1} = \frac{y_0}{1} = \frac{2z_0}{-1}.$$

Так как M_0 лежит на эллипсоиде, то $x_0^2 + y_0^2/2 + z_0^2 = 1$. Получили систему трех уравнений с тремя неизвестными:

$$\begin{cases} 2x_0 = y_0, \\ 2z_0 = -y_0, \\ x_0^2 + y_0^2/2 + z_0^2 = 1. \end{cases}$$

Находим ее решения $M_0^1(1/2;1;-1/2)$ и $M_0^2(-1/2;-1;1/2)$. Подставляя координаты этих точек в уравнение касательной плоскости, получим уравнения двух искомых касательных плоскостей, отвечающих условиям задачи:

$$x + y - z - 2 = 0$$
; $x + y - z + 2 = 0$.

Пример 4. Определить направление наибольшего роста функции $z = x^2 + xy + 7$ в точке $M_0(1; 1)$.

Решение. Направление наибольшего роста функции в точке M_0 определяется градиентом функции, вычисленным в этой точке, т. е. вектором вида

$$\operatorname{grad} z(M_0) = \frac{\partial z}{\partial x}(M_0)\vec{i} + \frac{\partial z}{\partial y}(M_0)\vec{j}.$$

Вычислив частные производные функции z в точке M_0 , получим, что grad $z(M_0) = \vec{i} + \vec{j}$.

 1° Локальный экстремум функции. Пусть u=f(x,y) определена в некоторой окрестности точки $M_0(x_0,y_0)$. Говорят, что функция u=f(x,y) имеет в точке M_0 строгий локальный максимум (минимум), если существует такая окрестность точки M_0 , в которой при $M\neq M_0$ выполняется неравенство $f(x,y) < f(x_0,y_0)$ ($f(x,y) > f(x_0,y_0)$). Локальный максимум (минимум) называют локальным экстремумом или просто экстремумом.

Пусть функция u = f(x,y) дифференцируема в M_0 . Точка M_0 называется стационарной точкой функции f(x,y), если частные производные функции по переменным x и y в M_0 равны нулю. Предположим, что в некоторой окрестности стационарной точки $M_0(x_0,y_0)$ u = f(x,y) имеет непрерывные частные производные до второго порядка включительно. Составим матрицу H вторых производных в M_0 :

$$H = \begin{pmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) \\ u''_{xy}(M_0) & u''_{yy}(M_0) \end{pmatrix}.$$

Обозначим \triangle_1 и \triangle_2 следующие главные миноры 1-го и 2-го порядков соответственно:

$$\triangle_1 = u''_{xx}(M_0), \quad \triangle_2 = u''_{xx}(M_0)u''_{yy}(M_0) - (u''_{xy}(M_0))^2.$$

Тогда, если:

- $1. \ \triangle_1 > 0, \triangle_2 > 0$, то M_0 является точкой строгого минимума функции u = f(x, y);
- 2. $\triangle_1 < 0, \triangle_2 > 0$, то M_0 является точкой строгого максимума функции u = f(x, y);
- $3. \ \triangle_2 < 0, \ \text{то} \ M_0$ не является точкой экстремума функции u = f(x,y).

В других случаях требуется дополнительное исследование.

Пример 5. Исследовать функцию $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$ на экстремум.

Peшение. Функция определена на всей плоскости. Вычислим частные производные по x и y и приравняем их к нулю:

$$\frac{\partial z}{\partial x} = 4x^3 - 4x + 4y, \qquad \frac{\partial z}{\partial y} = 4y^3 + 4x - 4y;
\begin{cases} 4x^3 - 4x + 4y = 0, \\ 4y^3 + 4x - 4y = 0 \end{cases} \Leftrightarrow \begin{cases} x^3 - x + y = 0, \\ y^3 + x - y = 0. \end{cases}$$

Из системы уравнений найдем три стационарные точки: $M_1(0;0), M_2(\sqrt{2};-\sqrt{2}), M_3(-\sqrt{2};\sqrt{2})$. Найдем частные производные второго порядка:

$$\frac{\partial^2 z}{\partial x^2} = 12x^2 - 4; \quad \frac{\partial^2 z}{\partial x \partial y} = 4; \quad \frac{\partial^2 z}{\partial y^2} = 12y^2 - 4.$$

В соответствии с достаточными условиями экстремума необходимо вычислить значения $a_{11}=z''_{xx},\ a_{22}=z''_{yy},\ a_{12}=z''_{xy}$ и $\triangle=a_{11}a_{22}-a_{12}^2$ в каждой стационарной точке.

В точке $M_1(0;0)$ получим: $a_{11}=-4$, $a_{22}=-4$, $a_{12}=4$, $\Delta=0$. В этом случае с помощью достаточных условий нельзя определить наличие экстремума в точке $M_1(0;0)$. Заметим, что z(0;0)=0, но в любой окрестности точки M_1 найдутся как точки, в которых значения функции положительны, так и точки, в которых значения отрицательны.

Например,

$$z = f(x,y)|_{y=0} = f(x,0) = x^4 - 2x^2 = -x^2(2-x^2) < 0$$
при малых $x,$

$$z = f(x,y)|_{y=x} = f(x,x) = 2x^4 > 0$$
 при $x \neq 0$.

Итак, в точке M_1 функция не имеет экстремума. В точке $M_2(\sqrt{2}; -\sqrt{2})$ $a_{11}=20>0, \ a_{22}=20, \ a_{12}=4, \ \triangle=384>0.$ Так как $a_{11}>0, \ \triangle>0,$ то в точке M_2 функция z имеет строгий локальный минимум, равный -8. В точке M_3 исследование проводится аналогично.

Пример 6. Изменить порядок интегрирования в повторном интеграле

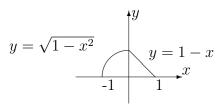
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx.$$

Изобразить область интегрирования на плоскости.

Решение. При каждом $y \in [0,1]$ переменная x меняется от $x(y) = -\sqrt{1-y^2}$ до x(y) = 1-y. Следовательно, область интегрирования сверху ограничена кривой

$$y(x) = \begin{cases} \sqrt{1 - x^2}, & x \in [-1, 0], \\ 1 - x, & x \in (0, 1], \end{cases}$$

а снизу прямой y = 0 и имеет вид:



Поэтому имеем

$$\int_{0}^{1} dy \int_{-\sqrt{1-y^{2}}}^{1-y} f(x,y) dx = \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy.$$

 2° Замена переменных в двойном интеграле.

Пример 7. Переходя к полярным координатам, вычислить двойной интеграл $\iint_S (x^2+y^2)\,dxdy$, где область S ограничена окружностью $x^2+y^2=2ax$.

Решение. Положим $x = r \cos \varphi$, $y = r \sin \varphi$. Тогда формула замены переменных в двойном интеграле имеет вид:

$$\iint\limits_{S} f(x,y) \, dx dy = \iint\limits_{S^*} f(r\cos\varphi, r\sin\varphi) r \, dr d\varphi.$$

Здесь S^* — образ области S на плоскости $Or\varphi$. Уравнение окружности $x^2+y^2=2ax$ в полярных координатах имеет вид $r=2a\cos\varphi$. Так как r>0, то $\varphi\in[-\pi/2,\pi/2]$. Таким образом, S^* — область, ограниченная осью r=0, косинусоидой $r=2a\cos\varphi$ на отрезке $\varphi\in[-\pi/2,\pi/2]$. Следовательно,

$$\iint_{S} (x^{2} + y^{2}) dxdy = \iint_{S^{*}} r^{3} dr d\varphi = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2a\cos\varphi} r^{3} dr =$$

$$= \int_{-\pi/2}^{\pi/2} \left(\frac{r^{4}}{4}\Big|_{0}^{2a\cos\varphi}\right) d\varphi = \frac{3}{2}\pi a^{4}.$$