Тема 6. Ряды

Написать простейшую формулу n-го члена ряда по указанным членам:

2401.
$$1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\dots$$

2404.
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

2411. Написать 4–5 первых членов ряда по известному общему члену $a_n = \frac{3n-2}{n^2+1}$.

Исследовать сходимость рядов, применяя признаки сравнения (или необходимый признак):

2416.
$$1-1+1-1+\ldots+(-1)^{n-1}+\ldots$$

2417.
$$\frac{2}{5} + \frac{1}{2} \left(\frac{2}{5}\right)^2 + \frac{1}{3} \left(\frac{2}{5}\right)^3 + \dots + \frac{1}{n} \left(\frac{2}{5}\right)^n + \dots$$

2418.
$$\frac{2}{3} + \frac{3}{5} + \frac{4}{7} + \dots + \frac{n+1}{2n+1} + \dots$$

2422.
$$\frac{1}{\sqrt{1\cdot 2}} + \frac{1}{\sqrt{2\cdot 3}} + \frac{1}{\sqrt{3\cdot 4}} + \dots + \frac{1}{\sqrt{n\cdot (n+1)}} + \dots$$

2427. Исследовать сходимость ряда с помощью признака Даламбера

$$\frac{1}{\sqrt{2}} + \frac{3}{2} + \frac{5}{2\sqrt{2}} + \dots + \frac{2n-1}{\left(\sqrt{2}\right)^n} + \dots$$

2429. Исследовать сходимость ряда с помощью признака Коши

$$\frac{2}{1} + \left(\frac{3}{3}\right)^2 + \left(\frac{4}{5}\right)^3 + \dots + \left(\frac{n+1}{2n-1}\right)^n + \dots$$

Исследовать сходимость знакоположительных рядов:

2431.
$$1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

2432.
$$\frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \dots + \frac{1}{(n+1)^2 - 1} + \dots$$

2434.
$$\frac{1}{3} + \frac{4}{9} + \frac{9}{19} + \dots + \frac{n^2}{2n^2 + 1} + \dots$$

2436.
$$\frac{3}{2^2 \cdot 3^2} + \frac{5}{3^2 \cdot 4^2} + \frac{7}{4^2 \cdot 5^2} + \dots + \frac{2n+1}{(n+1)^2 (n+2)^2} + \dots$$

2439.
$$\frac{1}{e} + \frac{8}{e^2} + \frac{27}{e^3} + \dots + \frac{n^3}{e^n} + \dots$$

2443.
$$\frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{4 \cdot 8 \cdot 12 \cdot \dots \cdot 4n} + \dots$$

$$2450. \sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{n}}.$$

2452.
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right)$$
.

Тема 6. Ряды

Исследовать сходимость знакопеременных рядов. В случае сходимости исследовать на абсолютную и условную сходимость:

2470.
$$1-\frac{1}{3}+\frac{1}{5}-\ldots+\frac{(-1)^{n-1}}{2n-1}+\ldots$$

2471.
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{3} - \dots + \frac{(-1)^{n-1}}{\sqrt{n}} + \dots$$

2473.
$$1-\frac{2}{7}+\frac{3}{13}-\ldots+\frac{(-1)^{n-1}n}{6n-5}+\ldots$$

2475.
$$-\frac{1}{2} - \frac{2}{4} + \frac{3}{8} + \frac{4}{16} - \dots (-1)^{\frac{n^2 + n}{2}} \frac{n}{2^n} + \dots$$

2476.
$$-\frac{2}{2\sqrt{2}-1} + \frac{3}{3\sqrt{3}-1} - \frac{4}{4\sqrt{4}-1} + \dots + (-1)^n \frac{n+1}{(n+1)\sqrt{n+1}-1} + \dots$$

2478.
$$\frac{3}{2} - \frac{3 \cdot 5}{2 \cdot 5} + \frac{1 \cdot 4 \cdot 7}{2 \cdot 5 \cdot 8} - \dots + (-1)^{n-1} \frac{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1)}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)} + \dots$$

Найти интервал сходимости степенного ряда и исследовать сходимость на концах интервала сходимости:

2526.
$$\sum_{n=0}^{\infty} x^{n}$$
. 2527. $\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot 2^{n}}$. 2529. $\sum_{n=1}^{\infty} \frac{2^{n-1} x^{2n-1}}{(4n-3)^{2}}$. 2533. $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$. 2534. $\sum_{n=1}^{\infty} n! x^{n}$. 2536. $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^{2n-1} x^{n}$. 2538. $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{2}\right)^{n}$. 2546. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 5^{n}}$. 2548. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-2)^{2n}}{2n}$. 2552. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{(2n-1) \cdot 2^{n}}$.

Разложить по целым положительным степеням x указанные функции, найти интервалы сходимости полученных рядов и исследовать поведение их остаточных членов:

2587.
$$a^x$$
 $(a > 0)$.

2589.
$$\cos(x+a)$$
.

Указанные функции разложить в ряд Фурье в интервале ($-\pi$, π):

2672 (6).
$$f(x) = \begin{cases} ax & \text{при } -\pi < x \le 0, \\ bx & \text{при } 0 \le x < \pi. \end{cases}$$
 2673. $f(x) = x^2$.

2675.
$$f(x) = \sin ax$$
.