

Математические методы в экологии: Сборник задач и упражнений / Сост. Е.Е. Семенова, Е.В. Кудрявцева. — Петрозаводск: Изд-во ПетрГУ, 2005.

13.04.2020

Занятие № 16

Вопрос об устойчивости положения равновесия динамической системы может быть сведен к вопросам о корнях характеристического уравнения линеаризованной системы:

- 1) Лежат ли все корни в левой полуплоскости комплексной плоскости?
- 2) Лежат ли все корни внутри круга единичного радиуса?

Понятие устойчивого многочлена. Критерий устойчивости многочлена (критерий Рауса-Гурвица)¹

Многочлен с вещественными коэффициентами a_i

$$P_n(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + ... + a_{n-1} \lambda + a_n, \quad a_0 \neq 0,$$

называется *устойчивым*, если все его нули имеют отрицательную вещественную часть.

Многочлены 1-го и 2-го порядка устойчивы тогда и только тогда, когда все их коэффициенты одного знака.

Необходимое условие устойчивости многочлена порядка n > 2: Все коэффициенты a_i одного знака.

Критерий Рауса-Гурвица

Для того чтобы многочлен $P_n(\lambda)$ с $a_0>0$ был устойчив необходимо и достаточно, чтобы главные диагональные миноры матрицы Гурвица

¹ Постников М. М. Устойчивые многочлены. – М.: Наука, 1981.

$$G = \begin{pmatrix} a_1 & a_0 & 0 & 0 & \dots & 0 \\ a_3 & a_2 & a_1 & a_0 & \dots & 0 \\ a_5 & a_4 & a_3 & a_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & a_n \end{pmatrix}$$

были положительны.

Матрица Гурвица имеет размерность $n \times n$ и составляется следующим образом. По главной диагонали располагаются коэффициенты многочлена $P_n(\lambda)$ начиная с a_1 до a_n . Столбцы с нечетными номерами состоят из коэффициентов a_i с нечетными индексами, столбцы с четными номерами состоят из коэффициентов a_i с четными индексами, включая a_0 . Все недостающие элементы заполняются нулями.

№ 40 (1)

Является ли многочлен $\lambda^4 + 2\lambda^3 + 3\lambda^2 + 2\lambda + 1$ устойчивым? (да)

№ 41 (1)

При каких значениях параметра $\alpha \in R$ многочлен $\lambda^3 + \alpha \lambda^2 + +2\lambda +1$ является устойчивым?

 $(\alpha > 1/2)$

№ 42 (1)

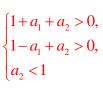
При каких значениях параметров $\alpha, \beta \in R$ многочлен $\lambda^3 + \alpha \lambda^2 + 2\lambda + \beta$ является устойчивым?

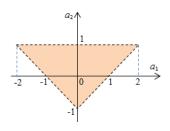
 $(\beta < 2\alpha, \alpha > 0, \beta > 0)$

Размещение нулей многочлена внутри единичного круга

.**№** 44

При каких a_1 , $a_2 \in R$ все нули многочлена $\lambda^2 + a_1\lambda + a_2$ лежат внутри круга единичного радиуса (т. е. $|\lambda| < 1$)?





Известно, что комплексная функция $\lambda = \frac{w+1}{w-1}$ отображает внутренность единичного круга плоскости λ на левую плоскость комплексной плоскости w. Нулям многочлена $P_n(\lambda)$, лежащим внутри единичного круга $|\lambda| < 1$, будут соответствовать нули многочлена

$$Q_n(\lambda) = a_0(w+1)^n + a_1(w+1)^{n-1}(w-1) + \dots + a_{n-1}(w+1)(w-1)^{n-1} + a_n(w-1)^n$$

или

$$Q_n(\lambda) = b_0 w^n + b_1 w^{n-1} + \dots + b_{n-1} w + b_n,$$

лежащие в левой полуплоскости плоскости w.

№ 45 (1)

Будут ли все нули многочлена $11\lambda^4 - 8\lambda^3 + 8\lambda^2 - 4\lambda + 1$ по модулю меньше 1?

(да)

Устойчивость положений равновесия автономных систем (метод линеаризации Ляпунова, теорема Ляпунова)

$$\begin{cases} x'(t) = f(x, y), \\ y'(t) = g(x, y), \end{cases} f, g \in C^2.$$

Поиск положений равновесия $P(x^*, y^*)$:

$$\begin{cases} f(x, y) = 0, \\ g(x, y) = 0. \end{cases}$$

Исследование на устойчивость по первому приближению²:

Положение равновесия $P(x^*,y^*)$ асимптотически устойчиво, если все собственные значения матрицы линеаризованной системы имеют отрицательную вещественную часть. Если хотя бы одно собственное значение имеет положительную вещественную часть, то положение равновесия $P(x^*,y^*)$ неустойчиво.

Матрица линеаризованной системы

$$A = \begin{pmatrix} f_{x}(x^{*}, y^{*}) & f_{y}(x^{*}, y^{*}) \\ g_{x}(x^{*}, y^{*}) & g_{y}(x^{*}, y^{*}) \end{pmatrix}$$

Характеристическое уравнение

$$\lambda^2 - \operatorname{tr} A \cdot \lambda + \det A = 0. \tag{*}$$

Условия асимптотической устойчивости положения равновесия

$$\operatorname{Re} \lambda_1 < 0, \operatorname{Re} \lambda_2 < 0 \quad \Leftrightarrow \begin{cases} \operatorname{tr} A < 0, \\ \operatorname{det} A > 0. \end{cases}$$

Тип положения равновесия $P(x^*, y^*)$

$\lambda_1, \lambda_2 \in R,$ $\lambda_1 \cdot \lambda_2 > 0$	$\lambda_1, \lambda_2 \in R,$ $\lambda_1 \cdot \lambda_2 < 0$	$\lambda_1, \lambda_2 \in \mathbb{C},$ $Re \lambda_i \neq 0$	$\lambda_1, \lambda_2 \in \mathbb{C},$ $\operatorname{Re} \lambda_i = 0$
узел	седло	фокус	Центр или фокус (нужны дополнительные исследования)
$D \ge 0$ и $\det A > 0$	detA < 0	D < 0 и trA≠ 0	det A > 0 и $tr A = 0$

Дискриминант уравнения характеристического уравнения (*):

$$D = (trA)^2 - 4 \cdot \det A.$$

² Степанов В. В. Курс дифференциальных уравнений. – М.: Едиториал УРСС, 2004.

Найти и исследовать на устойчивость положения равновесия системы:

$$\begin{cases} x'(t) = 2 + y - x^2, \\ y'(t) = 2x(x - y). \end{cases}$$

(0; -2)	$\lambda^2 - 4 = 0$	неустойчиво
(-1; -1)	$\lambda^2 - 4\lambda + 6 = 0$	неустойчиво
(2; 2)	$\lambda^2 + 8\lambda + 12 = 0$	ас. устойчиво

Домашнее задание

- 1) $\mathbb{N} \cdot \mathbb{N} \cdot 40(2,3)$, 41(2,3), 42(2,3), 45(2,3);
- 2) Найти и исследовать на устойчивость положения равновесия системы:

$$\begin{cases} x'(t) = x^2 - y, \\ y'(t) = x^2 - (y - 2)^2. \end{cases}$$

3) Классификация точек покоя для автономной системы дифференциальных уравнений. Построение фазовых портретов ЛДС.