

[П] Проскуряков И.В. **Сборник задач по линейной алгеб- ре.** – СПб.: Издательство «Лань». 2010.

URL: http://elibrary.sgu.ru/uch_lit/560.pdf

[Ф] Фаддеев Д.К., Соминский И.С. **Сборник задач по** высшей алгебре. http://bookre.org/reader?file=635343

19.09.2025

Занятие № 3

Действия с матрицами

- 1. **Суммой матриц** $A = \left(a_{ij}\right)$ и $B = \left(b_{ij}\right)$ одинаковой размерности называется матрица $C = \left(c_{ij}\right)$, элементы которой определяются суммой соответствующих элементов матриц A и B, т.е. $c_{ij} = a_{ij} + b_{ij}$. Обозначение: C = A + B.
- 2. Произведением матрицы $A = \left(a_{ij}\right)$ на число λ называется матрица C, элементы которой определяются равенством $c_{ij} = \lambda a_{ij}$. Обозначение: $C = \lambda A$.
- 3. **Произведением матрицы** $A = \left(a_{ij}\right)$ размера $m \times k$ на матрицу $B = \left(b_{ij}\right)$ размера $k \times n$ называется матрица $C = \left(c_{ij}\right)$ размера $m \times n$, элементы которой определяются равенством

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ik}b_{kj} = \sum_{p=1}^{k} a_{ip}b_{pj}.$$

Обозначение: C = AB. Произведение определено только для таких матриц, у которых число столбцов матрицы A (первого сомножителя) равно числу строк матрицы B (второго сомножителя). При этом число строк матрицы C равно числу строк матрицы A, а число столбцов — числу столбцов матрицы B:

$$[\underline{k} \times \underline{n}] \cdot [\underline{n} \times \underline{m}] = [\underline{k} \times \underline{m}].$$

4. Матрица $A^{T}=\left(ilde{a}_{ij}
ight)$ является **транспонированной к матрице** $A = (a_{ii})$, если ее элементы определяются равенством $\tilde{a}_{ij} = a_{ji}$. Таким образом, строки матрицы A^T являются соответствующими столбцами матрицы A.

Свойства арифметических операций с матрицами:

1)
$$A + B = B + A$$
:

2)
$$(A+B)+C = A+(B+C);$$
 7) $A(B+C) = AB+AC;$
3) $\lambda(A+B) = \lambda A + \lambda B;$ 8) $(\lambda A)B = A(\lambda B);$

3)
$$\lambda(A+B) = \lambda A + \lambda B$$
;

4)
$$(\lambda + \mu)A = \lambda A + \mu A$$
;

5)
$$(A+B)^T = A^T + B^T$$
;

6)
$$A(BC) = (AB)C$$
;

7)
$$A(B+C) = AB + AC$$
:

8)
$$(\lambda A)B = A(\lambda B)$$
;

$$9) \quad (A^T)^T = A;$$

$$10) (AB)^T = B^T A^T.$$

Задание 1

Для матриц A и B найдите произведения AB и BA:

1)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$

1)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$ 2) $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$.

Ответы:

1)
$$AB = \begin{pmatrix} 17 \\ 39 \end{pmatrix}$$
 2) $AB = \begin{pmatrix} 22 & 28 \\ 49 & 64 \end{pmatrix}$; $BA = \begin{pmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ 29 & 40 & 51 \end{pmatrix}$

Задание 2

Для матриц

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \\ 5 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -2 \\ 1 & 3 \\ 0 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & -5 \\ -2 & 3 \\ 1 & -4 \end{pmatrix}$$

Найдите $(3A-2B)C^T$.

ОТВЕТ:
$$\begin{pmatrix} 25 & -16 & 13 \\ 9 & -5 & 10 \\ 140 & -87 & 91 \end{pmatrix}$$

Задание 3

Найдите
$$f(A)$$
, если $A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$, $f(x) = x^2 - 7x - 2$.

Замечание¹. $f(A) = A^2 - 7A - 2E$, где E – единичная матрица той же размерности, что и матрица A.

ОТВЕТ:
$$f(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

Задание 4

Для любого натурального n найдите

1)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n$$
; 2) No 802: $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}^n$.

Ответы:

1)
$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$
; 2) $\begin{pmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{pmatrix}$.

Под многочленом от матрицы понимается выражение

$$f(A) = a_0 A^n + a_1 A^{n-1} + ... + a_{n-1} A + a_n E,$$

где ${\it E}$ – единичная матрица той же размерности, что и квадратная матрица ${\it A}$.

 $^{^{1}}$ Пусть $f(x) = a_{0}x^{n} + a_{1}x^{n-1} + \ldots + a_{n-1}x + a_{n}$ - многочлен от переменной x.

Задание 5 (№ 815 (а))

Докажите, что если A и B – квадратные матрицы одного и того же порядка, причем $AB \neq BA$, то $(A+B)^2 \neq A^2 + 2AB + B^2$.

Домашнее задание

Для матриц А и В найдите произведения АВ и ВА:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 3 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 3 & 2 & 3 \\ -2 & -2 & -1 & -3 \\ 3 & 4 & 1 & 2 \end{pmatrix}.$$

[П]: №№ 801, 805, 815(6), 827, 829.

Для любого натурального n найдите $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^n$.

Самостоятельно разобрать решение следующих заданий

Задание 1.

На какую матрицу и как (справа или слева) надо умножить матрицу A порядка $n \times m$, чтобы получить матрицу, совпадающую с k-м столбцом матрицы A.

$$A\cdot S,\ \mathit{где}\ S-\mathit{столбец}\ \mathit{us}\ \mathit{m}\ \mathit{элементов}\ s_{j}= egin{cases} 0,\ j\neq k, \\ 1,\ j=k. \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & -2 & -3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 7 & 0 \\ 7 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}$$

На какую матрицу и как надо умножить матрицу A порядка $n \times m$, чтобы получить матрицу, совпадающую с k-ой строкой матрицы A.

$$S \cdot A$$
, где $S-$ строка из n элементов $s_j = \begin{cases} 0, & j \neq k, \\ 1, & j = k. \end{cases}$

$$(0 \ 1 \ 0) \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ -1 & -2 & -3 & -4 \end{pmatrix} = (5 \ 6 \ 7 \ 8)$$

Примеры выделения из матрицы отдельных столбцов и строк:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & -2 & -3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \\ -2 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \boxed{1 & 2 & 3 & 4} \\ 5 & 6 & 7 & 8 \\ \hline -1 & -2 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & -2 & -3 & -4 \end{pmatrix}$$

Задание 2.

Докажите, что $(AB)^T = B^T A^T$, матрицы в правой и левой части равенства существуют.

Доказательство. Пусть матрица A имеет размеры $n\times m$, матрица B - $m\times k$. Обозначим C=AB. Матрица C имеет размеры $n\times k$, а транспонированная матрица C^T – размеры $k\times n$. Для элементов матрицы C^T имеем:

$$c_{si}^{T} = c_{is} = \sum_{i=1}^{m} a_{ij}b_{js}, \quad i = 1, 2, ..., n, \ s = 1, 2, ..., k.$$

С другой стороны, матрицы B^T и A^T имеют размеры $k{\times}m$ и $m{\times}n$ соответственно, и

$$b_{sj}^{T} = b_{js}, \quad a_{ji}^{T} = a_{ij}, \quad i = 1, 2, ..., n; \quad j = 1, 2, ..., m; \quad s = 1, 2, ..., k.$$

Обозначим $D=B^TA^T$. Матрица D имеет размеры $k{\times}n$ и для ее элементов имеем:

$$d_{si} = \sum_{j=1}^{m} b_{sj}^{T} a_{ji}^{T} = \sum_{j=1}^{m} b_{js} a_{ij} = \sum_{j=1}^{m} a_{ij} b_{js} = c_{is} = c_{si}^{T}, \quad s = 1, 2, ..., k; \quad i = 1, 2, ..., n.$$

Из равенства элементов матриц D и C^T следует $C^T = D$. Таким образом, $(AB)^T = B^T A^T$.