МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Петрозаводский государственный университет

Институт математики и информационных технологий Кафедра прикладной математики и кибернетики

~	>>	2024 г.
		К.Г. Тарасов
Пр	оректор	по учебной работе
УТ	ВЕРЖД	(AЮ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Направление подготовки бакалавриата 01.03.01 Математика

Профиль направления подготовки бакалавриата «Математика в образовании, фундаментальных и прикладных исследованиях»

Форма обучения очная

Рабочая программа дисциплины разработана в соответствии с ФГОС ВО, утвержденным приказом Министерства науки и высшего образования Российской Федерации от 10.01.2018 г. № 8 (с изменениями от 08.02.2021 № 83, от 26.11.2020 № 1456, от 27.02.23 № 208), и учебным планом по направлению подготовки бакалавриата 01.03.01 Математика (профиль «Математика в образовании, фундаментальных и прикладных исследованиях»).

Разработчики:
Заика Юрий Васильевич, профессор кафедры прикладной математики и кибернетики Ин ститута математики и информационных технологий ПетрГУ, доктор физмат. наук, про фессор
(подпись) Семёнова Елена Евгеньевна, доцент кафедры прикладной математики и кибернетики Института математики и информационных технологий ПетрГУ, к.фм.н., доцент
(подпись)
Эксперт:
Родченкова Наталья Ивановна, старший научный сотрудник лаборатории моделирования природно-технических систем Института прикладных математических исследований КарНЦ РАН, руководитель службы научных коммуникаций КарНЦ РАН, к.фм.н.
Рабочая программа дисциплины рассмотрена и одобрена на заседании кафедры <i>приклад ной математики и кибернетики</i>
Протокол № 9 от «27» мая 2024 г.
И.о. заведующего кафедрой (к.фм.н., доцент, Пешкова И.В.)
СОГЛАСОВАНО:
Рабочая программа дисциплины рассмотрена и утверждена на заседании учебно методической комиссии Института математики и информационных технологий
Протокол № 4 от «05» июня 2024 г.
Директор института (к.фм.н., доцент, Светова Н.Ю.) $ (no\partial nucb) $
Начальник учебно-методического управления ПетрГУ М.В. Данилова

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы (ОПОП) бакалавриата

1.1. Компетенции обучающегося, формируемые в результате освоения дисциплины и индикаторы достижения компетенций:

Код и этап формирова- ния компе- тенции	Формулировка компе- тенции	Индикаторы достижения компетенции
ОПК-1 основной	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1. Знает основные понятия и методы фундаментальных математических дисциплин. ОПК-1.2. Умеет применять фундаментальные знания, полученные в области математических наук, и использовать их в профессиональной деятельности. ОПК-1.3. Умеет осуществлять выбор методов решения задач профессиональной деятельности на основе теоретических знаний.
ОПК-2 Начальный, основной	Способен разрабатывать, анализировать и внедрять новые математические модели в современных естествознании, технике, экономике и управлении	ОПК-2.1. Знает основные задачи и области применения методов математического моделирования, основные принципы математического моделирования, методы построения и анализа математических моделей. ОПК-2.2. Умеет применять методы математического моделирования к решению конкретных задач из различных областей естествознания, техники, экономики и управления; выбирать методы исследования математических моделей; строить и исследовать математические модели. ОПК-2.3. Владеет навыками применения математического аппарата к исследуемым моделям.
ОПК-3 основной	Способен использовать в педагогической деятельности научные знания в сфере математики и информатики	ОПК-3.1. Обладает знаниями основных разделов фундаментальных математических дисциплин и информатики. ОПК-3.2. Умеет точно представить знания в сфере математики и информатики обучающимся, учитывая их уровень подготовки.

1.2. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

Знать:

- основные понятия и определения теории обыкновенных дифференциальных уравнений (ОДУ), методы интегрирования простейших типов уравнений и мето-

- ды их качественного исследования; области приложений ОДУ в естественных науках;
- типы краевых задач, виды граничных условий; условия существования и единственности решения задачи Коши.

Уметь:

- классифицировать простейшие типы уравнений, применять соответствующие методы их интегрирования, анализировать качественную картину поведения решений:
- применять соответствующую изучаемому процессу математическую модель (дать постановку краевой задачи) и проверить ее адекватность;
- использовать в педагогической деятельности знания теории обыкновенных дифференциальных уравнений, уметь представлять и адаптировать знания с учетом уровня аудитории.

Владеть:

- навыками интегрирования дифференциальных уравнений, методологией применения полученных знаний в других областях математики и дисциплинах естественнонаучного содержания;
- методами построения в явном виде решений краевых задач, качественного анализа математической модели;
- методами точного представления знания из теории дифференциальных уравнений обучающимся, учитывая их уровень подготовки.

2. Место дисциплины в структуре ОПОП бакалавриата и язык преподавания

Дисциплина «Дифференциальные уравнения» входит в обязательную часть учебного плана основной образовательной программы бакалавриата по данному направлению подготовки и является обязательной для изучения.

Согласно учебному плану дисциплина проводится в 3 и 4 семестрах.

Изучение дисциплины опирается на знания, умения и навыки, приобретенные при освоении образовательной программы предыдущего уровня, а также при изучении дисциплин учебного плана данной образовательной программы: Алгебра, Математический анализ.

Полученные знания активно используются в дальнейшем при изучении таких дисциплин как *Уравнения с частными производными*, *Теоретическая механика*, *Вариационное исчисление*, *Численные методы*, а также при выполнении научно-исследовательской работы в области математического моделирования физических, биологических, экологических, экономических, социальных и других процессов живой и неживой природы.

Язык преподавания – русский.

3. Виды учебной работы и тематическое содержание дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц или 252 академических часа.

3.1. Виды учебной работы

	Объем	
Виды учебной работы	в академических	
	часах	
Общая трудоемкость дисциплины по учебному плану	252	
В том числе:		

Контактная работа (работа во взаимодействии с преподавателем), всего	120
В том числе:	
Лекции (Л)	60
Практические занятия (Пр)	60
Лабораторные занятия (Лаб)	0
Вид промежуточной аттестации	зачет (3 семестр), экзамен (4 семестр)
Самостоятельная работа обучающихся (СР) (всего)	132
В том числе: Самостоятельное изучение разделов дисциплины, подготовка к занятиям. Подготовка к промежуточной аттестации	

3.2. Краткое содержание дисциплины по разделам и видам учебной работы

		Трудоемкость по видам учебных занятий (в академических часах)						
№ п/п	Раздел дисциплины (тематический модуль)		Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	Оценочное средство	
	Семестр Л	<u>3</u>						
1	Методы интегрирования обыкновенных дифференциальных уравнений 1-го порядка	80	16	30		34	Контроль- ная работа, зачет	
2	Общие свойства решений систем дифференциальных уравнений	28	14			14	зачет	
	Вид промежуточной аттестан	ии в с	емест	ре - за	чет			
	Всего, 3 семестр	108	30	30		48		
	Семестр Л	<u>4</u>	ı	1				
3	Линейные уравнения и системы	60	22	16		22	Контроль- ная работа, экзамен	
4	Элементы качественной теории дифференциальных уравнений	36	6	10		20	Контрольная работа, экзамен	
5	Уравнения в частных производных 1-го порядка	12	2	4		6	контроль- ная работа, экзамен	
	Подготовка к промежуточной аттестации	36				36	Экзамен	

Вид промежуточной аттестации в семестре – экзамен						
Всего, 4 семестр 144 30 30 84						
Итого:	252	60	60	132		

3.3. Содержание аудиторных занятий

Содержание лекционных занятий

№ разлела	№ лекции	Основное содержание	Количество часов	В т.ч. с использо- ванием ДОТ (*)
	<u>"</u>	Семестр № 3		ı
1	1-2	Общие понятия теории дифференциальных уравнений (ДУ), примеры математических моделей динамических процессов.	4	
1	3	Задача Коши, формулировки теорем существования и единственности решений. Геометрическая интерпретация. Понятия общего решения и общего интеграла.	2	
1	4-6	Уравнения с разделяющимися переменными, однородные, линейные, в полных дифференциалах, уравнения Бернулли и Риккати.	6	
1	7-8	Уравнения, не разрешенные относительно производной. Задача Коши, особые решения, огибающая. Методы интегрирования.	4	
2	9-10 Доказательство теоремы существования и единственности решения задачи Коши. Управляемые системы с кусочнонепрерывными управлениями.		4	
2	11-12	Зависимость решений от числовых и функциональных параметров, начальных данных.	4	
2	13	Элементы аналитической теории дифференциальных уравнений. Теорема Коши. Уравнение Бесселя.	2	
2	14	Метод малого параметра. Регулярные и сингулярные возмущения.	2	
2	15	Дифференциальные уравнения с последействием	2	
		Всего, 3 семестр	30	
		Семестр № 4		
3	1-2	Линейные уравнения n -го порядка. Общие свойства.	4	
3	3	Линейные уравнения с постоянными коэффициентами	2	
3	4-5	Уравнения второго порядка. Элементы теории колебаний. Явление резонанса.	4	
3	6	Импульсные возмущения. Применение дельта-функции.	2	
3	7	Линейные системы ДУ. Общие свойства.	2	
3	8	Линейные системы с постоянными коэффициентами	2	
3	9	Линейные системы с периодическими коэффициентами	2	
3	10	Операционный метод решения ДУ	2	
3	11	Линейная граничная задача	2	

4	12	Векторные поля, фазовые потоки. Общие свойства траекторий динамических систем.	1	
4	12	Производная по направлению поля фазовой скорости. Первые интегралы.	1	
4	13	Фазовый портрет динамической системы на плоскости	2	
4	14	Устойчивость движения. Функции Ляпунова	2	
5	15	Линейное уравнение с частными производными первого порядка	2	
		Всего, 4 семестр	30	
		Всего:	60	

Содержание практических занятий

Семестр № 3 1 1-4 Методы интегрирования дифференциальных уравнений 1-го порядка (уравнения с разделяющимися переменными, однородные уравнения). 7 1 4 Контрольная работа № 1 (часть 1). 1 1 5-9 Методы интегрирования дифференциальных уравнений 1-го порядка (линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Риккати). 1 1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15- Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем ных уравнений с постоянными коэффициентами и их систем 4 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 <td< th=""><th></th></td<>	
1 1-4 Методы интегрирования дифференциальных уравнений 1-го порядка (уравнения с разделяющимися переменными, однородные уравнения). 7 1 4 Контрольная работа № 1 (часть 1). 1 1 5-9 Методы интегрирования дифференциальных уравнений 1-го порядка (линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Риккати). 10 1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем ных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. <td>В т.ч. с исполь- зованием ДОТ</td>	В т.ч. с исполь- зованием ДОТ
1 4 Контрольная работа № 1 (часть 1). 1 1 5-9 Методы интегрирования дифференциальных уравнений 1-го порядка (линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Риккати). 10 1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	
1 4 Контрольная работа № 1 (часть 1). 1 1 5-9 Методы интегрирования дифференциальных уравнений 1-го порядка (линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Риккати). 10 1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, огибающая семейства кривых. 2 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем ных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	
1 5-9 Методы интегрирования дифференциальных уравнений 1-го порядка (линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Риккати). 10 Контрольная работа № 1 (часть 2). 2 1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	
1 10 Контрольная работа № 1 (часть 2). 2 1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем ных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
1 11-12 Методы интегрирования уравнений, не разрешенных относительно производной. Уравнения Клеро и Лагранжа. Особые решения, огибающая семейства кривых. 4 1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем ных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
1 13-14 Уравнения, допускающие понижение порядка 4 1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
1 15 Контрольная работа № 2 (часть 1). 2 Всего, 3 семестр 30 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
Всего, 3 семестр № 4 Семестр № 4 3 1-5 Решение линейных дифференциальных уравнений п-го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
3 1-5 Решение линейных дифференциальных уравнений <i>п</i> -го порядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 10 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 4 3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
рядка. Методы Лагранжа, Коши, неопределенных коэффициентов. 3 6-7 Операционный метод решения линейных дифференциальных уравнений с постоянными коэффициентами и их систем 3 8 Контрольная работа № 3 (часть 1) 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	
ных уравнений с постоянными коэффициентами и их систем 3 8 Контрольная работа № 3 (часть 1) 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	
3 8 Контрольная работа № 3 (часть 1) 2 4 9-10 Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты. 4	
4 9-10 Линейные системы. Типы особых точек на фазовой плоско- сти. Фазовые портреты.	
4 11-12 Нелинейные системы. Теорема об устойчивости по первому приближению.	
4 13 Контрольная работа № 4 (часть 1) 2	
5 14-15 Линейные и квазилинейные уравнения с частными производными 1-го порядка 4	
Всего, 4 семестр 30	

		Итого:	60	
--	--	--------	----	--

3.4. Организация самостоятельной работы обучающегося

№ раздела	Виды самостоятельной работы	Трудоем- кость в час.			
	Семестр № 3				
1-2	Изучить теоретический материал (конспект лекций) и литературу по темам разделов 1-2	15			
1-2	Выполнить домашние задания (в том числе заданий, решаемых с помощью систем компьютерной математики), которые указывает преподаватель после каждого практического занятия.	23			
1	Подготовиться к контрольной работе № 1 (часть 1 и часть 2). Решить примерный вариант работы, приведенный в разделе 5 рабочей программы.	2			
1	Подготовиться к контрольной работе №2 (часть 1). Решить примерный вариант работы, приведенный в разделе 5 рабочей программы.	2			
1	Выполнить индивидуальное контрольное задание. Контрольная работа № 2 (часть 2). Уравнения, допускающие по- нижение порядка	2			
1-2	Подготовка к зачету, сдача зачета	4			
	Всего, 3 семестр	48			
	Семестр № 4				
3-5	Изучить теоретический материал (конспект лекций) и литературу по темам разделов 3-5	10			
3-5	Выполнить домашние задания (в том числе заданий, решаемых с помощью систем компьютерной математики), которые указывает преподаватель после каждого практического занятия.	22			
3	Подготовиться к контрольной работе № 3 (часть 1). Решить примерный вариант работы, приведенный в разделе 5 рабочей программы.	2			
4	Подготовиться к контрольной работе № 4 (часть 1). Решить примерный вариант работы, приведенный в разделе 5 рабочей программы.	2			
4	Выполнить индивидуальное контрольное задание. Контрольная работа № 3 (часть 2). Линейные уравнения. Систе- мы линейных уравнений	2			
4	Просмотреть презентацию «Фазовые портреты динамических систем. Часть 1. Линейные динамические системы» https://edu.petrsu.ru/object/3299	4			
4	Выполнить индивидуальное контрольное задание. Контрольная работа № 4 (часть 2). Теорема об устойчивости по первому приближению. Фазовый портрет нелинейной динамической системы.	6			
1-5	Подготовка к экзамену, сдача экзамена	36			
	Всего, 4 семестр	84			
	ОЛОТИ	132			

4. Образовательные технологии по дисциплине

При изучении дисциплины «Дифференциальные уравнения» используются следующие образовательные технологии:

- аудиторные занятия (лекционные и практические занятия);
- внеаудиторные занятия (самостоятельная работа, индивидуальные консультации).

Предусматривается использование в учебном процессе следующих активных и интерактивных форм проведения занятий:

- практические занятия в диалоговом режиме;
- решение задач с помощью систем компьютерной математики (вычисление интегралов; нахождение собственных значений и собственных векторов матрицы; построение изображений по Лапласу, восстановление оригиналов по известному изображению; визуализация решений).

Учебно-методические материалы публикуются на сайте дисциплины: https://math-it.petrsu.ru/users/semenova/DIFF UR/index.html

5. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

- 5.1. Текущий контроль осуществляется преподавателем дисциплины с помощью устного опроса на практических занятиях, при проведении занятий в форме контрольной работы, а также проверки выполнения домашних заданий. К оценочным средствам для текущего контроля относятся:
 - аудиторные контрольные работы,
 - индивидуальные контрольные задания (домашние контрольные работы).

Примеры вариантов контрольных работ

Контрольная работа № 1 (часть 1, аудиторная)

Уравнения с разделяющимися переменными. Однородные уравнения

Решите уравнения:

1)
$$y' \ln y = yx^2 \ln x;$$
 2)

1)
$$y' \ln y = yx^2 \ln x;$$
 2) $\left(y' - \frac{y}{x} \right) \cos \frac{y}{x} = \sin^2 \frac{y}{x};$ 3) $y' = \frac{y - 15x + 13}{y + 9x - 11}.$

Критерий оценивания

Задание 1)	2 балла
Задание 2)	3 балла
Задание 3)	4 балла

В зависимости от полученных баллов работа оценивается следующи образом: «Отлично» - 8-9 баллов, «хорошо» - 5-7 баллов, «удовлетворительно» - 2-4 балла, «неудовлетворительно» - менее 2 баллов.

Контрольная работа № 1 (часть 2, аудиторная)

Методы решения дифференциальных уравнений 1-го порядка

Решите уравнения:

1)
$$y' - \frac{y}{x} = 2xe^{2x}$$
; 2) $y \operatorname{tg} x - 4y' = \frac{y^5 \cos x}{\sin^2 x}$; 3) $y' + \frac{11y}{x} + y^2 = \frac{24}{x^2}$.

4)
$$(2x\cos x^2 + \cos y^2)dx - 2xy\sin y^2dy = 0;$$
 5) $\left(\frac{2\sqrt{y} \cdot e^x}{x} - y^3\right)dx + \left(3y^2 + \frac{e^x \ln x}{\sqrt{y}}\right)dy = 0;$

Критерий оценивания

Задание 1)	2 балла
Задание 2)	3 балла
Задание 3)	3 балла

Задание 4)	2 балла
Задание 5)	3 балла

В зависимости от полученных баллов работа оценивается следующи образом: «Отлично» - 11-13 баллов, «хорошо» - 8-10 баллов, «удовлетворительно» - 5-7 баллов, «неудовлетворительно» - менее 5 баллов.

Контрольная работа № 2 (часть 1, аудиторная)

Уравнения 1-го порядка, не разрешенные относительно производной

Решите уравнения:

1)
$$x = \frac{1}{v'+1} + \ln|y'+1|$$
;

2)
$$y = \frac{2(y')^2 - 1}{4} \arccos y' - \frac{y'}{4} \sqrt{1 - (y')^2};$$

3)
$$xy' - \frac{y}{2} - \frac{1}{v'v^2} = 0;$$

4)
$$y = x(y'-tg y') + \sin^2 y'$$
.

Критерий оценивания

Задание 1)	2 балла
Задание 2)	2 балла

Задание	3)	3 балла
Задание	4)	3 балла

В зависимости от полученных баллов работа оценивается следующи образом: «Отлично» - 9-10 баллов, «хорошо» - 6-8 баллов, «удовлетворительно» - 4-5 балла, «неудовлетворительно» - менее 4 баллов.

Контрольная работа № 2 (часть 2, домашняя)

Уравнения, допускающие понижение порядка

Решите уравнения:

1)
$$x = (y''-1) \ln y'';$$

2)
$$\sin x \cos x (yy'' - (y')^2) + 2yy' = 0;$$

3)
$$(y')^2 + y''\sqrt{1 - y^2} \arcsin y = 0$$
;

4)
$$y'' = \frac{2(y - xy')}{x^2} + \sinh x$$
.

Критерий оценивания

«Зачтено» выставляется, если выполнены правильно все задания работы, иначе -«не зачтено».

Контрольная работа № 3 (часть 1, аудиторная)

Линейные уравнения с постоянными коэффициентами

Решите уравнения:

1)
$$y^{(4)} + 9y''' + 21y'' + 19y' + 6y = 0;$$

2)
$$y^{(6)} + 2y^{(4)} - 4y'' - 8y = 0;$$

3)
$$y'' - 2y' + 17y = \frac{4e^x}{\cos(4x)}$$
;

4)
$$y'' + y' - 2y = (2 - 6x)e^{-2x}$$
;

5)
$$y^{(15)} + y^{(14)} = \sin x - \cos x$$
;

6)
$$y'' + 2y' + 5y = x - 5x^2 + 5 - 4e^{-x} \sin 2x$$
.

Критерий оценивания

Задание 1)	1 балл
Задание 2)	1 балл
Задание 3)	2 балла

Задание 4)	2 балла
Задание 5)	2 балла
Задание 6)	2 балла

В зависимости от полученных баллов работа оценивается следующи образом: «Отлично» - 9-10 баллов, «хорошо» - 7-8 баллов, «удовлетворительно» - 4-6 балла, «неудовлетворительно» - менее 4 баллов.

Контрольная работа № 3 (часть 2, домашняя)

Линейные уравнения, системы линейных уравнений

1. Решите уравнение при x > 0:

$$x^3y''' + 3x^2y'' - 2xy' + 2y = \frac{4}{x};$$

2. Решите системы уравнений:

1)
$$\begin{cases} x' = x + y - 3z, \\ y' = 3x + 2y - 3z, \\ z' = x + z; \end{cases}$$
 2)
$$\begin{cases} x' = -x + 4y - 4z, \\ y' = x + 4y + \sin t, \\ z' = 4x + 22y - 3z. \end{cases}$$

2)
$$\begin{cases} x' = -x + 4y - 4z, \\ y' = x + 4y + \sin t, \\ z' = 4x + 22y - 3z \end{cases}$$

3. Решите краевую задачу:

$$y''-4y'+5y = 3e^{2x}(\sin 2x - 3\cos 2x),$$

$$y(0) = 3, \quad y(2\pi) = 3e^{4\pi}.$$

Критерий оценивания

«Зачтено» выставляется, если выполнены правильно все задания работы, иначе -«не зачтено».

Контрольная работа № 4 (часть 1, аудиторная)

Устойчивость положений равновесия линейных уравнений. Фазовый портрет линейной динамической системы

1. Исследовать на устойчивость нулевое решение уравнения

$$y^{V} + 2y^{IV} + 4y''' + 6y'' + 5y' + 4y = 0.$$

2. Рассматривается система

$$\dot{x} = a^2x - y, \quad \dot{y} = 5x - (3 + 2a)y.$$

- 1) При каких значениях параметра a нулевое решение системы является асимптотически устойчивым?
- 2) Нарисуйте траектории системы при a = -3.
- 3) Существует ли такое значение $a \in \mathbf{R}$, при котором траектории замкнутые кривые?

Критерий оценивания

Задание 1)	2 балла
Задание 2.1)	1 балл

Задание 2.2)	2 балла
Задание 2.3)	1 балла

В зависимости от полученных баллов работа оценивается следующи образом: «Отлично» - 6 баллов, «хорошо» - 4-5 баллов, «удовлетворительно» - 2-3 балла, «неудовлетворительно» - менее 2 баллов.

Контрольная работа № 4 (часть 2, домашняя)

Фазовый портрет нелинейной динамической системы

Рассматривается система дифференциальных уравнений

$$\begin{cases} \dot{x} = (x-2)^2 - y^2, \\ \dot{y} = x - y^2. \end{cases}$$

Выполните следующие задания:

- 1. Найдите все положения равновесия системы и, используя теорему об устойчивости по первому приближению, исследуйте их на устойчивость.
- 2. Нарисуйте фазовые портреты линеаризованных систем в окрестности каждого положения равновесия.
- 3. Постройте фазовый портрет заданной системы.

Критерий оценивания

«Зачтено» выставляется, если выполнены правильно все задания работы, иначе – «не зачтено».

5.2. Промежуточная аттестация проводится в виде зачета и экзамена.

Условием получения зачета (3 семестр) является обязательное посещение лекционных и практических занятий; выполнение заданий, предлагаемых в рамках самостоятельной работы, выполнение контрольных работ.

Вопросы к зачету (3 семестр) – Методы решения уравнений 1-го порядка

- 1. Уравнения с разделяющимися переменными.
- 2. Однородные уравнения.
- 3. Линейные уравнения 1-го порядка. Структура общего решения неоднородного уравнения. Методы Бернулли и вариации произвольной постоянной.
- 4. Уравнения в полных дифференциалах. Интегрирующий множитель.
- 5. Уравнения Бернулли и Риккати.
- 6. Уравнения, не разрешенные относительно производной.
- 7. Метод интегрирования введением параметра.

Условием допуска к экзамену (4 семестр) является обязательное посещение лекционных и практических занятий, выполнение всех контрольных работ. Оценка, полученная обучающимся по результатам работы на практических занятиях, учитывается при выставлении экзаменационной оценки.

Вопросы к экзамену (4 семестр)

- 1. Общие понятия теории дифференциальных уравнений (ДУ), примеры моделей динамических процессов.
- 2. Уравнения с разделяющимися переменными, однородные, линейные.
- 3. Уравнения в полных дифференциалах. Интегрирующий множитель.
- 4. Уравнения Бернулли и Риккати.
- 5. Уравнения, не разрешенные относительно производной.
- 6. Метод интегрирования введением параметра.
- 7. Теорема существования и единственности решения задачи Коши.

- 8. Управляемые системы с кусочно-непрерывными управлениями.
- 9. Зависимость решений от параметров и начальных данных.
- 10. Метод малого параметра. Регулярные и сингулярные возмущения.
- 11. Теорема Коши о голоморфном решении.
- 12. Элементы аналитической теории ДУ. Уравнение Бесселя.
- 13. Дифференциальные уравнения с последействием.
- 14. Линейные уравнения n-ого порядка. Общие свойства.
- 15. Линейные уравнения с постоянными коэффициентами.
- 16. Уравнения второго порядка. Элементы теории колебаний. Резонанс.
- 17. Импульсные возмущения. Применение дельта-функции.
- 18. Линейные системы ДУ. Общие свойства.
- 19. Линейные системы с постоянными коэффициентами.
- 20. Функции от матриц. Матричная экспонента.
- 21. Линейные системы с периодическими коэффициентами.
- 22. Операционный метод решения ДУ.
- 23. Линейная граничная задача.
- 24. Векторные поля, фазовые потоки.
- 25. Общие свойства траекторий динамических систем.
- 26. Производная по направлению поля фазовой скорости. Первые интегралы.
- 27. Фазовый портрет динамической системы на плоскости.
- 28. Устойчивость движения. Функции Ляпунова.
- 29. Теорема Ляпунова об устойчивости по линейному приближению.
- 30. Линейное уравнение с частными производными первого порядка.

Билет содержит один теоретический вопрос и одну задачу.

Оценка «*отпично*» выставляется обучающемуся, если он владеет знаниями предмета в полном объеме учебной программы, достаточно глубоко осмысливает дисциплину; самостоятельно, в логической последовательности и исчерпывающе отвечает на все вопросы, подчеркивает при этом самое существенное, умеет анализировать, сравнивать, классифицировать, обобщать, конкретизировать и систематизировать изученный материал, выделять в нем главное: устанавливать причинно-следственные связи; четко формулирует ответы. При этом задача, предложенная в билете, должна быть правильно решена.

Оценка «*хорошо*» выставляется обучающемуся, если он владеет знаниями дисциплины почти в полном объеме программы (имеются пробелы знаний только в некоторых, особенно сложных разделах); самостоятельно и отчасти при наводящих вопросах дает полноценные ответы на вопросы; не всегда выделяет наиболее существенное, не допускает вместе с тем серьезных ошибок в ответах. При этом задача, предложенная в билете должна быть правильно решена.

Оценка «удовлетворительно» выставляется обучающемуся, если он владеет основным объемом знаний по дисциплине; проявляет затруднения в самостоятельных ответах, оперирует неточными формулировками; в процессе ответов допускает ошибки по существу вопросов. При этом задача, предложенная в билете должна быть правильно решена.

Оценка «*неудовлетворительно*» выставляется обучающемуся, если он не освоил обязательного минимума знаний предмета, не способен ответить на вопросы даже при дополнительных наводящих вопросах экзаменатора.

6. Методические рекомендации обучающимся по дисциплине, в том числе для самостоятельной работы

Для успешного освоения дисциплины необходимо знание тем и основных понятий следующих дисциплин учебного плана подготовки по направлению 01.03.01 Математика:

- 1) Алгебра матрица, определитель матрицы, характеристический многочлен матрицы, простые и кратные нули многочлена, поиск рациональных нулей многочлена с целыми коэффициентами, собственные значения и вектора матрицы, матричная экспонента, формула Эйлера, линейно зависимые и линейно независимые вектора, системы линейных алгебраических уравнений (СЛАУ), методы решения СЛАУ (метод Гаусса, метод Крамера, метод обратной матрицы).
- 2) Математический анализ непрерывные функции; кусочно-непрерывные функции; производная и дифференциал; неявные функции; дифференцирование неявных функций; функции нескольких переменных; частные производные; производная по направлению; интегрирование функции; правила интегрирования; таблица основных интегралов; интегралы, зависящие от параметра; функциональные ряды; степенные ряды; признаки сходимости ряда.

Задания для самопроверки к началу изучения курса

- 1. Найдите все рациональные нули многочлена $6x^4 + x^3 + 2x^2 4x + 1$.
- 2. Найдите собственные значения и собственные вектора матриц:

1)
$$A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 4 & -2 \\ 1 & 5 & -3 \end{pmatrix};$$
 2) $A = \begin{pmatrix} 3 & -3 & 1 \\ 3 & -2 & 2 \\ -1 & 2 & 0 \end{pmatrix}.$

3. Найдите решение системы

$$\begin{cases} x + 2y + 3z = 6 \\ -x + y + 2z = 2 \\ x + 3y + 5z = 9 \end{cases}$$

- 4. Проверить, будут ли вектора $\mathbf{a} = \{1; 1; 1\}$, $\mathbf{b} = \{1; 2; 0\}$, $\mathbf{c} = \{0; -1; 1\}$ линейно независимыми.
- 5. Проверить, будут ли вектора $a = \{1; 1; 1\}$, $b = \{1; 2; 0\}$, $c = \{0; -1; 2\}$ линейно независимыми.
- 6. Найдите дифференциал функции $y = \arcsin(1-x) + \sqrt{2x-x^2}$;
- 7. Найдите производную функции y = y(x), заданной уравнением $x^3 + y^3 3xy = 0$.
- 8. Вычислите следующие интегралы:

1)
$$\int \frac{3 \operatorname{tg}^2 x}{\cos^2 x} dx$$
. 2) $\int \frac{x}{\sin^2 x} dx$, 3) $\int \frac{x^2 + 2x + 6}{(x - 1)(x - 2)(x - 4)} dx$. 4) $\int \frac{\sin 2x}{1 + \cos^2 x} dx$.

- 9. Найдите производную функции $y(x) = \int_0^x \sin \frac{x-\xi}{a} d\xi$.
- 10. Найдите частные производные первого порядка и полный дифференциал для следующих функций $u(x, y) = x \sin(x + y)$, $u(x, y) = \arctan \frac{x+y}{1-xy}$.
- 11. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$.
- 12. Найти интервал сходимости степенного ряда и исследовать сходимость на концах интервала сходимости $\sum_{n=1}^{\infty} \frac{(x-2)^n}{(2n-1)\cdot 2^n}$.

Методические и справочные материалы по дисциплине, план-график практических

занятий и контрольных мероприятий, конспекты практических занятий, задания для самостоятельной работы, примерные варианты контрольных работ, результаты текущего контроля и материалы для подготовки к промежуточной аттестации публикуются на сайте дисциплины https://math-it.petrsu.ru/users/semenova/DIFF_UR/index.html (в открытом доступе).

7. Методические рекомендации преподавателям по дисциплине

Планирование лекционных и практических занятий осуществляется с учётом установленного количества часов.

Лекции составляют основу теоретического обучения и дают систематизированные основы научных знаний по дисциплине, раскрывают состояние и перспективы развития соответствующей области науки, концентрируют внимание обучающихся на наиболее сложных и узловых вопросах, стимулируют их активную познавательную деятельность и способствуют формированию творческого мышления. Ведущим методом лекционного занятия выступает устное изложение учебного материала.

Практические занятия направлены на формирование у обучающихся умений решать типовые задачи. Преподаватель оценивает знания и умения обучающихся путем проведения контрольных работ и проверки домашних заданий.

7.1. Задачи для аудиторных занятий и задачи, предлагаемые для самостоятельного решения (домашнее задание)

Для проведения практических занятий рекомендуется использовать следующие задачники:

- [Ф] Филиппов, А.Ф. Сборник задач по дифференциальным уравнениям (любое издание после 1992 года).
- [М] Матвеев, Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям: Для вузов / Н.М. Матвеев. Минск: Вышэйшая школа, 1977. 416 с.
- [Р] Романко, В.К. Сборник задач по дифференциальным уравнениям и вариационному исчислению / В.К. Романко, Н.Х. Агаханов, В.В. Власов, Л.И. Коваленко. Москва : ЮНИМЕДИАСТАЙЛ, 2002. 256 с.

$\mathcal{N}_{\underline{\mathbf{o}}}$		Номера задач	
те-	Тема	для аудиторных	для самостоятель-
МЫ		занятий	ных занятий
1	Составление дифференциальных уравнений заданного семейства плоских кривых.	[Φ]: № 17, 21, 27, 30	[Ф]: 18, 20, 26, 32
2	Дифференциальные уравнения 1-го порядка		
	Дифференциальные уравнения с разделяю- щимися переменными	[Ф]: № 65, 54, 55, 66, 68 (а,в), 78; [M]: 90, 146	[Φ]: 63, 64, 67, 68(6), 71; [M]: 142, 147
	Однородные уравнения	[Φ]: № 101, 103, 107, 109, 112, 111, 116, 114	[Φ]: № 102, 104, 108, 110, 115, 113, 117
	Уравнения, приводящиеся к уравнениям с разделяющимися переменными	[Φ]: № 118, 119, 126	[Φ]: № 120
	Линейные уравнения 1-го порядка	[Φ]: № 136, 137, 138, 145, 148, 149,	[Φ]: № 139, 140, 141, 144,
	Уравнения Бернулли, Риккати	[Φ]: № 151, 154, 157, 159, 167	[Φ]: № 146, 147, 152, 153, 155, 164, 168

	Уравнения в полных дифференциалах. Интегрирующий множитель	[Φ]: № 186, 190, 191, 194, 195, 199, 202, 206, 200 [M]: № 354, 355, 358,	[Φ]: № 187, 189, 193, 196, 197, 201, 203, 219, [M]: № 356, 357, 362
	Уравнения, неразрешенные относительно про- изводной. Особые решения. Метод введения параметра	[Φ]: № 241, 242, 244, 249, 251, 267, 272, 274, 278, 283, 287, [M]: № 528	[Φ]: № 243, 246, 269, 252, 255, 307, 271, 282, [M]: № 524, 527,
3	Уравнения, допускающие понижение порядка	[Φ]: № 421, 425, 456, 463, 422, 426, 434, 432, 501,	[Φ]: № 433, 435, 437, 460, 438, 447, 451
4	Решение линейных дифференциальных уравнений <i>п</i> -го порядка	[Φ]: № 511, 515, 521, 523, 524, 526, 530, 532, 582, 533, 534, 535, 538, 540, 583, 546, 548, 549, 550, 551, 555, 569, 575, 577, 588, 607, 589, 591, 593, 595,	[Φ]: № 512, 516, 520, 522, 525, 527, 529, 536, 537, 539, 541, 543, 584, 553, 559, 562, 574, 578,579, 585, 587, 590, 592, 594
5	Линейные системы с постоянными коэффициентами	[Φ]: № 786, 813, 832, 796, 798, 801,817, 808, 811, 826,	[Φ]: № 787, 789, 797, 814, 843, 799, 802, 818, 829
6	Операционный метод решения линейных дифференциальных уравнений и их систем	[P]: §8, № 172, 173, 179, § 11, № 187, 189	[P]: §8, № 177, 182, § 11, № 188, 193
7	Линейные системы. Типы особых точек на фазовой плоскости. Фазовые портреты.	[Φ]: № 932, 934, 941, 949, 961, 971, 973, 977	[Φ]: № 933, 935, 943, 950, 962, 972, 976, 978
8	Нелинейные системы дифференци- альных уравнений	[Φ]: № 1143, 1146, 1148, 1153, 1159	[Φ]: № 1141, 1147, 1149, 1154, 1157
9	Устойчивость по первому прибли- жению	[Φ]: № 899, 901, 905, 908, 912, 916, 919, 921, 1025, 1040,	[Φ]: № 900, 902, 906, 907, 910, 915, 918, 922, 1026, 1041
10	Линейные уравнения в частных производных первого порядка	[Φ]: № 1168, 1170, 1172, 1176, 1183, 1190, 1193, 1194, 1199, 1211	[Ф]: № 1167,1174, 1173, 1179, 1181, 1182, 1192, 1197, 1203, 1212

7.2. Оценочные средства для текущего контроля успеваемости

Варианты контрольных работ и рекомендации по оцениванию контрольных заданий приведены в фонде оценочных средств.

8. Учебно-методическое и информационное обеспечение дисциплины

Дисциплина полностью обеспечена учебной литературой, представленной в печатном или электронном виде. Для осуществления образовательной деятельности по дисциплине рекомендуется следующая основная и дополнительная литература.

8.1. Основная литература:

- 1. Заика, Ю.В. Дифференциальные уравнения. Курс лекций / Ю.В. Заика. Петрозаводск : КарНЦ РАН, 2012. 215 с. URL: https://edu.petrsu.ru/object/12619
- 2. Матвеев, Н.М. Методы интегрирования обыкновенных дифференциальных уравнений / Н.М. Матвеев. Москва: Высшая школа, 1967. 564 с.

- http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm
- 3. Матвеев, Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям: Для вузов / Н.М. Матвеев. Минск : Вышэйшая школа, 1977. 416 с.
- 4. Понтрягин, Л.С. Обыкновенные дифференциальные уравнения / Л.С. Понтрягин. Москва: Hayka, 1982. 331 с. http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm
- 5. Тихонов, А.Н. Дифференциальные уравнения / А.Н. Тихонов, А.Б. Васильева, А.Г. Свешников. Москва : ФИЗМАТЛИТ, 2002. 256 с. [Электронный ресурс] http://www.studentlibrary.ru/book/ISBN9785922102773.html http://biblioclub.ru/index.php?page=book_red&id=145012&sr=1
- 6. Филиппов, А.Ф. Сборник задач по дифференциальным уравнениям / А.Ф. Филиппов. Москва : Наука, 1992. 128 с.
- 7. Эльсгольц, Л.Э. Дифференциальные уравнения и вариационное исчисление / Л.Э. Эльсгольц. Москва : Наука, 1969. 424 с. [Электронный ресурс] http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm

8.2. Дополнительная литература:

- 1. Васильева, А.Б. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах / А.Б. Васильева, Г.Н. Медведев, Н.А. Тихонов, Т.А. Уразгильдина. Москва: ФИЗМАТЛИТ, 2003. 432 с. [Электронный ресурс] http://www.studentlibrary.ru/book/ISBN5922102761.html
- 2. Демидович, Б.П. Лекции по математической теории устойчивости / Б.П. Демидович. Москва: Наука, 1967. 480 с. [Электронный ресурс] http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm
- 3. Егоров, А.И. Обыкновенные дифференциальные уравнения с приложениями / А.И. Егоров. Москва : ФИЗМАТЛИТ, 2005. 448 с. [Электронный ресурс] http://www.studentlibrary.ru/book/ISBN9785922107853.html
- 4. Камке, Э. Справочник по обыкновенным дифференциальным уравнениям / Э. Камке. Москва: Наука, 1971. 575 с. [Электронный ресурс] http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm http://biblioclub.ru/index.php?page=book_red&id=454586&sr=1
- 5. Романко, В.К. Курс дифференциальных уравнений и вариационного исчисления / В.К. Романко. Москва : Лаборатория Базовых Знаний, 2000. 344 с. [Электронный ресурс] http://www.studentlibrary.ru/book/ISBN9785996330133.html

8.3. Программное обеспечение и Интернет-ресурсы:

1. Сайт «EqWorld. МИР МАТЕМАТИЧЕСКИХ УРАВНЕНИЙ»:

Образование: обыкновенные дифференциальные уравнения http://eqworld.ipmnet.ru/ru/education/edu-ode.htm

Книги по обыкновенным дифференциальным уравнениям: http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm

- 2. Пакет для математических и инженерных расчетов MathCAD (сайт производителя https://www.ptc.com/en/products/mathcad)
 Петрозаводский университет обеспечен необходимым комплектом лицензионного программного обеспечения.
- 3. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 4. Электронной библиотечной системы «Консультант студента. Студенческая элек-

тронная библиотека» http://www.studentlibrary.ru

- 8.4. Информационное обеспечение дисциплины в системе электронного (дистанционного) обучения
 - 1. Фазовые портреты динамических систем. Часть 1. Линейные динамические системы. Ресурс размещен на образовательном портале ПетрГУ https://edu.petrsu.ru/object/3299 Обеспечивает учебно-методическую поддержку при выполнении обучающимися практических заданий на построение фазовых портретов автономных систем линейных дифференциальных уравнений. Содержит необходимый теоретический материал и примеры.

9. Материально-техническое обеспечение дисциплины

Материально-техническая база ПетрГУ обеспечивает проведение всех видов дисциплинарной подготовки обучающихся, предусмотренных учебным планом и соответствует действующим санитарным и противопожарным правилам и нормам.

Минимально-необходимый перечень для информационно-технического и материально-технического обеспечения дисциплины:

- аудитория для проведения лекционных и практических занятий, оснащенная рабочими местами для обучающихся и преподавателя, доской, мультимедийным оборудованием;
- библиотека с читальным залом и залом для самостоятельной работы обучающегося, оснащенная компьютером с выходом в Интернет, книжный фонд которой составляет специализированная научная, учебная и методическая литература, журналы (в печатном или электронном виде).

Дата: 5 мая 2024 г.