Лекция 3

Непрерывная модель динамики возрастной структуры

Перейдем к рассмотрению динамики плотности популяции с учетом одного из основных факторов — возрастной структуры популяции. Необходимость такого рассмотрения при анализе экосистем обусловлена следующими положениями:

- Плодовитость и смертность особей в популяции существенным образом зависят от их возраста и, следовательно, соотношения между различными возрастными группами в популяции определяют как ее способность к размножению в настоящий момент, так и ее динамику в будущем.
- 2). Вопросы рациональной эксплуатации природных ресурсов (земледелие, лесоводство, рыболовство и т. д.), связанные со «сбором урожая» животных или растений в подавляющем большинстве случаев требуют учета возрастной структуры популяции.

Таким образом, для достаточно адекватного описания динамики популяции при условии изолированного существования и равномерного заселения ареала обитания, ее состояние следует определять не только ее плотностью N(t), но и распределением числа особей по возрастам.

1. Дифференциальная модель

Обозначим через $x(\tau,t)$ число особей возраста τ в момент времени t. Функция $x(\tau,t)$ называется *плотностью возрастного распределения* и обладает свойством: для любых двух возрастов τ_1 и τ_2 таких, что $\tau_1 < \tau_2$, численность особей в популяции, возраст которых в момент времени t лежит в интервале $[\tau_1, \tau_2]$, определяется по формуле:

$$N(\tau_1, \tau_2, t) = \int_{\tau_1}^{\tau_2} x(\tau, t) d\tau.$$
 (1)

Для любой конкретной популяции существует верхняя граница возраста, которая никогда не достигается. Обозначим ее через $\overline{\tau}$. Следовательно, $x(\tau,t)=0$ при $\tau\geqslant\overline{\tau}$ и $t\geqslant0$, а для плотности N(t) в момент t получаем следующее выражение

$$N(t) = \int_{0}^{\overline{\tau}} x(\tau, t) d\tau.$$
 (2)

Иногда из математических соображений удобнее считать возраст τ переменной, изменяющейся от 0 до $+\infty$. Это допустимо при соответствующих ограничениях на функции рождаемости и смертности.

Поскольку в реальных экосистемах $N(t)<\infty$, то интеграл (2) ограничен. Это означает, что при фиксированном t функция $x(\tau,t)$ суммируема по τ . Таким образом, состояние популяции в каждый момент времени t определяется функцией $x(\tau,t)$, заданной в пространстве неотрицательных на $[0;\overline{\tau}]\times[0;+\infty)$ функций, суммируемых по τ .

Определим зависимые от возраста характеристики размножения и гибели популяции.

Коэффициентом рождаемости называют функцию $b(\tau,t)$ такую, что для любых двух возрастов $\tau_1, \tau_2(\tau_1 < \tau_2)$ количество особей, рожденных родителями возраста $\tau \in [\tau_1; \tau_2]$ в момент времени t, равно

$$\int_{\tau_1}^{\tau_2} b(\tau, t) x(\tau, t) d\tau. \tag{3}$$

Иначе можно сказать, что $b(\tau,t)$ равно среднему числу потомков, рождаемых особью возраста τ в единицу времени в момент времени t. Явная зависимость функции $b(\tau,t)$ от t отображает нестационарность условий окружающей среды. Например, учитывает переменные погодные условия.

Полная рождаемость в популяции B(t), таким образом, равна:

$$B(t) = \int_{0}^{\overline{\tau}} b(\tau, t) x(\tau, t) d\tau, \tag{4}$$

и имеет место следующее соотношение:

$$B(t) = x(0,t). (5)$$

Коэффициентом смертности называют такую функцию $m(\tau,t)$, что для любых возрастов τ_1 и τ_2 ($\tau_1<\tau_2$) количество умерших особей возраста $\tau\in[\tau_1,\tau_2]$ в момент времени t равно

$$\int_{\tau_1}^{\tau_2} m(\tau, t) x(\tau, t) d\tau. \tag{6}$$

Общая смертность M(t) в популяции, таким образом, равна:

$$M(t) = \int_{0}^{\overline{\tau}} m(\tau, t) x(\tau, t) d\tau.$$
 (7)

Очевидно, что коэффициенты рождаемости и смертности являются неотрицательными функциями. Будем далее считать, что функции b и d непрерывны в области определения, т. е. принадлежат классу $C([0,\overline{\tau}]\times[0;+\infty))$. Примерный вид графиков функций b и m для стационарных условий представлен на рис. 1.

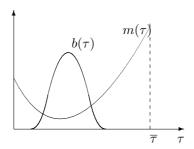


Рис.1. Примерный вид графиков функций $b(\tau)$ и $m(\tau)$

Уравнения, описывающие динамику возрастной структуры популяции, получим на основе балансовых соотношений.

В момент времени t число особей возраста $\tau \in (0, \overline{\tau})$ равно $x(\tau, t)$. За промежуток времени от t до $t + \Delta t$ возраст этих особей увеличивается на Δt единиц. Следовательно, разность

$$x(\tau + \triangle t, t + \triangle t) - x(\tau, t)$$

определяет изменение численности (плотности) τ -возрастной группы особей за промежуток времени от t до $t+\Delta t$. Но так как мы не

рассматриваем миграции особей, то единственной причиной изменения плотности любой возрастной группы при $0 < \tau < \overline{\tau}$ является отток особей из популяции, вызванный смертностью. Так что имеем:

$$x(\tau + \triangle t, t + \triangle t) - x(\tau, t) = -\int_{0}^{\triangle t} m(\tau + \eta, t + \eta) x(\tau + \eta, t + \eta) d\eta.$$

Применив к интегралу в правой части уравнения теорему о среднем, получим:

$$x(\tau + \Delta t, t + \Delta t) - x(\tau, t) = -m(\tau + \eta_1, t + \eta_1)x(\tau + \eta_1, t + \eta_1)\Delta t,$$
$$\eta_1 \in [0, \Delta t].$$

Разделив обе части уравнения на $\triangle t$ и устремив $\triangle t \rightarrow 0$, получим уравнение:

$$\lim_{\Delta t \to 0} \frac{x(\tau + \Delta t, t + \Delta t) - x(\tau, t)}{\Delta t} = -m(\tau, t)x(\tau, t),$$

которое при условии дифференцируемости функции $x(\tau,t)$ примет вид:

$$\frac{\partial x(\tau,t)}{\partial \tau} + \frac{\partial x(\tau,t)}{\partial t} = -m(\tau,t)x(\tau,t). \tag{8}$$

Уравнение (8) называют уравнением выживаемости и рассматривают в области задания переменных τ и $t:G=\{\tau\in(0,\overline{\tau}),\ t\in(0;+\infty)\}$. Для однозначного определения плотности возрастного распределения к уравнению (8) следует добавить условия на границе области G. При $\tau=0$ имеем условие:

$$x(0,t) = B(t) = \int_{0}^{\overline{\tau}} b(\tau,t)x(\tau,t) d\tau, \quad t \geqslant 0, \tag{9}$$

которое содержит неизвестную функцию под знаком интеграла. Условие (9) называют уравнением рождаемости. Для момента времени t=0 задается начальное условие:

$$x(\tau,0) = \varphi(\tau), \quad \tau \in [0,\overline{\tau}],$$
 (10)

где функция $\varphi(\tau)$ описывает начальное возрастное распределение. Недостижимость предельного возраста $\overline{\tau}$ позволяет записать следующее условие:

$$x(\tau, t) = 0 \quad \tau \geqslant \overline{\tau}, \ t \geqslant 0. \tag{11}$$

Если функция $x(\tau,t)$ является непрерывной в области G, включая ее границу, то должно быть выполнено условие согласования условий (9)-(11):

$$B(0) = \varphi(0), \quad \varphi(\tau) = 0 \quad \forall \, \tau \geqslant \overline{\tau}.$$
 (12)

Уравнения и условия (8)-(12) составляют дифференциальную (или непрерывную) модель динамики возрастной структуры популяции.

2. Случай стационарной среды

Построим общее решение уравнения выживаемости (8) методом характеристик для случая, когда коэффициенты рождаемости и смертности являются функция только возраста, т. е. $b=b(\tau), \ m=m(\tau),$ и $\overline{\tau}=+\infty.$

Составив систему характеристик

$$\frac{d\tau}{1} = \frac{dt}{1} = \frac{dx}{-m(\tau)x} \quad \Leftrightarrow \quad \begin{cases} d\tau - dt = 0, \\ d\tau + \frac{dx}{m(\tau)x} = 0, \end{cases}$$

найдем два первых интеграла

$$\tau - t = C_1, \quad x \cdot e^{\int_0^{\tau} m(\eta) d\eta} = C_2.$$

Они определяют два семейства характеристик для уравнения (8). Общее решение уравнения выживаемости найдем из соотношения

$$\Phi\left(\tau - t, x \cdot e^{\int_{0}^{\tau} m(\eta) \ d\eta}\right) = 0,$$

где Φ – произвольная дифференцируемая функция. Функция

$$x(\tau,t) = C(\tau - t) \cdot e^{-\int_{0}^{\tau} m(\eta) d\eta}, \tag{13}$$

где C(z) – произвольная дифференцируемая функция, определяет общее решение уравнения (8).

Подчиним найденное решение заданным краевым условиям. При t=0 будем иметь:

$$x(\tau,0) = C(\tau)e^{-\int_{0}^{\tau} m(\eta) d\eta} = \varphi(\tau), \quad \tau \geqslant 0.$$

Откуда устанавливаем вид функции C при неотрицательных значениях аргумента:

$$C(\tau) = \varphi(\tau)e^{\int_{0}^{\tau} m(\eta) d\eta}, \quad \tau \geqslant 0.$$

Учитывая условие (9), для $\tau = 0$ установим

$$x(0,t) = C(-t) = B(t).$$

Откуда получим

$$C(t) = B(-t), \quad t < 0.$$

Следовательно, функция C, входящая в выражение (13), определена следующим образом:

$$C(z) = \begin{cases} \varphi(z)e^{\int_{0}^{z} m(\eta) d\eta}, & z \geqslant 0, \\ B(-z), & z < 0, \end{cases}$$

так что выражение (13) примет вид:

$$x(\tau,t) = \begin{cases} \varphi(\tau-t) \cdot e^{\int_{0}^{\tau-t} m(\eta) d\eta} \cdot e^{-\int_{0}^{\tau} m(\eta) d\eta}, & \tau \geqslant t, \\ B(t-\tau) \cdot e^{\int_{0}^{\tau} m(\eta) d\eta}, & \tau < t. \end{cases}$$
(14)

Так как при $\tau \geqslant t$ справедливы следующие преобразования:

$$\int_{0}^{\tau - t} m(\eta) \, d\eta - \int_{0}^{\tau} m(\eta) \, d\eta = -\int_{\tau - t}^{\tau} m(\eta) \, d\eta = -\int_{0}^{t} m(\tau - t + \eta) \, d\eta,$$

то при $\tau \geqslant t$ выражение для функции $x(\tau,t)$ примет вид:

$$x(\tau,t) = \varphi(\tau-t) \cdot e^{-\int_{0}^{t} m(\tau-t+\eta) d\eta}.$$

Обозначим через

$$l(\tau, t) = \frac{x(\tau, t)}{B(t - \tau)}.$$

Функция $l(\tau,t)$ определяет долю особей, родившихся в момент времени $t-\tau$ и доживших до момента времени t. Ее называют коэффициентом выживаемости. В случае стационарной среды

$$l = l(\tau) = e^{-\int_{0}^{\tau} m(\eta) d\eta}.$$

Обозначим через

$$l_0(\tau,t) = e^{-\int\limits_0^t m(\tau - t + \eta) d\eta}.$$

Функция $l_0(\tau,t)$ при $\tau\geqslant t$ характеризует выживаемость возрастных групп, которые существовали в начальный момент времени, т. е. долю особей, доживших до возраста τ из числа тех, которые в начальный момент времени имели возраст $\tau-t$:

$$l_0(\tau, t) = \frac{x(\tau, t)}{\varphi(\tau - t)}.$$

Теперь выражение (14) для функции $x(\tau,t)$ можно записать следующим образом:

$$x(\tau,t) = \begin{cases} \varphi(\tau-t)l_0(\tau,t), & \tau \geqslant t, \\ B(t-\tau)l(\tau), & \tau < t. \end{cases}$$
 (15)

В (15) входит функция полной рождаемости B(t), которая пока неизвестна. Она является решением уравнения рождаемости (9), из которого, используя (20), можно исключить функцию $x(\tau,t)$ следующим образом

$$B(t) = \int_{0}^{t} b(\tau)x(\tau,t) d\tau + \int_{t}^{+\infty} b(\tau)x(\tau,t) d\tau,$$

$$B(t) = \int_{0}^{t} b(\tau)B(t-\tau)l(\tau) d\tau + \int_{t}^{+\infty} b(\tau)\varphi(\tau-t)l_0(\tau,t) d\tau.$$

Обозначим

$$K(\tau) = b(\tau)l(\tau), \quad F(t) = \int_{t}^{+\infty} b(\tau)\varphi(\tau - t)l_0(\tau, t) d\tau.$$

В результате получили интегральное уравнение рождаемости

$$B(t) = \int_{0}^{t} K(\tau)B(t-\tau) d\tau + F(t).$$
 (16)

3. Решение интегрального уравнения рождаемости операционным методом

Решим уравнение (16) с помощью преобразования Лапласа. Обозначим изображения Лапласа для функций $B(t),K(\tau),F(t)$ через $B^*(p),K^*(p),F^*(p)$ соответственно. Интеграл $\int\limits_0^tK(\tau)B(t-\tau)\,d\tau$ является сверткой функций B(t) и K(t). Тогда, согласно теореме умножения (изображение свертки), получим для (16) соответствующее операторное уравнение

$$B^*(p) = K^*(p)B^*(p) + F^*(p).$$

Откуда найдем

$$B^*(p) = \frac{F^*(p)}{1 - K^*(p)}. (17)$$

Уравнение

$$1 - K^*(p) = 0 (18)$$

называют *характеристическим уравнением* для интегрального уравнения (16). Рассмотрим некоторые свойства корней уравнения (18).

Свойство 1. Все корни уравнения (18) являются простыми. Левая часть уравнения (18) является функцией комплексной переменной p. Обозначим ее через G(p). Для функции G(p) имеем

$$G(p) = 1 - \int_{0}^{+\infty} e^{-p\tau} K(\tau) d\tau.$$
 (19)

По биологическому смыслу функция $K(\tau)$ является неотрицательной, равной нулю вне некоторого интервала (когда особи еще или уже не оставляют потомства). Так что интеграл в (19) сходится при любых p. Пусть ξ – корень уравнения (18), т. е. $G(\xi)=0$. Для производной функции G(p) имеем

$$G'(p) = \int_{0}^{+\infty} \tau e^{-p\tau} K(\tau) d\tau.$$
 (20)

Очевидно, $G'(\xi) > 0$. Следовательно, так как $G'(\xi) \neq 0$, то ξ является простым корнем уравнения (18).

Свойство 2. Уравнение (18) имеет единственный вещественный корень p^* .

Это свойство следует из того, что функция G(p) монотонна на вещественной прямой и меняет свои значения от $-\infty$ до 1 (функция строго возрастает).

Свойство 3. Если $\xi = \alpha + i \, \beta$ является корнем уравнения (18), то и $\bar{\xi} = \alpha - i \, \beta$ также корень уравнения (18).

Так как $\xi = \alpha + i \beta$ – корень уравнения (18), то $G(\alpha + i \beta) = 0$ и имеем

$$1 - \int_{0}^{+\infty} e^{-(\alpha+i\beta)\tau} K(\tau) d\tau = 0.$$

Используя формулу Эйлера, последнее равенство преобразуем к виду:

$$\int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \cos \beta \tau \, d\tau - i \int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \sin \beta \tau \, d\tau = 1.$$

Откуда получаем

$$\begin{cases} \int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \cos \beta \tau \, d\tau = 1, \\ \int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \sin \beta \tau \, d\tau = 0. \end{cases}$$
 (21)

Решив полученную систему относительно α и β , найдем все корни уравнения (18). Очевидно, если пара (α, β) является решением системы (21), то и пара $(\alpha, -\beta)$ будет решением системы (21). Отсюда

следует справедливость свойства 3.

Свойство 4. Для любого комплексного корня $\xi = \alpha + i \beta$ уравнения (18) справедливо неравенство $\alpha < p^*$.

Так как $G(p^*) = 0$ и $G(\xi) = 0$, то, учитывая (21), имеем

$$K(p^*) = \int_{0}^{+\infty} e^{-p^*\tau} K(\tau) d\tau = 1, \quad \int_{0}^{+\infty} e^{-\alpha\tau} K(\tau) \cos \beta \tau d\tau = 1.$$

Так как

$$1 = \int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \cos \beta \tau \, d\tau < \int_{0}^{+\infty} e^{-\alpha \tau} K(\tau) \, d\tau = K(\alpha),$$

то будем иметь

$$K(p^*) < K(\alpha) \Leftrightarrow 1 - K(p^*) > 1 - K(\alpha) \Leftrightarrow G(p^*) > G(\alpha).$$

Так как функция G(p) является возрастающей на вещественной прямой, то получим $p^* > \alpha$.

Замечание. Все приведенные рассуждения справедливы при достаточно гладкой функции $K(\tau)$. В случае же, когда $K(\tau) = \delta(\tau - A)$ (δ -функция Дирака), возможно достижение равенства $p^* = \alpha$. Этот случай описывает ситуацию, соответствующую однократному размножению.

Зная все корни p_n уравнения (18), по теореме разложения функция B(t) определяется в виде

$$B(t) = \sum_{n} C_n e^{p_n t}, \qquad (22)$$

где C_n – вычеты функции $B^*(p)$ в соответствующих полюсах p_n .

Окончательное решение задачи о динамике возрастной структуры популяции в стационарной среде получается постановкой выражения (22) в (15). Для $t > \tau$ будем иметь

$$x(\tau,t) = l(\tau) \sum_{n} C_n e^{p_n(t-\tau)}.$$
 (23)

4. Асимптотическое поведение решения (23)

Будем считать, что функция $K(\tau)$ является достаточно гладкой и выполняется свойство 4 для корней характеристического уравнения (18). Пусть в (23) $p_1=p^*$. Тогда в решении (23) при достаточно больших значениях t можно пренебречь всеми членами суммы, кроме главного при n=1. Следовательно, при больших значениях t будем иметь

$$x(\tau, t) \approx C_1 e^{p^* t} e^{-p^* \tau} \cdot l(\tau). \tag{24}$$

Асимптотическое поведение функции $x(\tau,t)$ при $t\to +\infty$ определяется поведением выражения (24). Знак p^* определяет рост $(p^*>0)$ или вырождение $(p^*<0)$ популяции. Случай $p^*=0$ соответствует асимптотически равновесной численности:

$$\lim_{t \to +\infty} x(\tau, t) = C_1 \cdot l(\tau) = C_1 e^{-\int_{0}^{\tau} m(\eta) \, d\eta}.$$

Из свойств монотонности функции G(p) на вещественной прямой легко получить простой критерий для определения знака p^* . Так как G(p) возрастает на вещественной прямой и $G(p^*)=0$, то

$$p^* \geqslant 0 \Leftrightarrow G(p^*) \geqslant G(0) \Leftrightarrow G(0) \lessgtr 0 \stackrel{(19)}{\Leftrightarrow} \int_0^{+\infty} K(\tau) d\tau \geqslant 1.$$

Функция $K(\tau) = b(\tau)l(\tau)$ характеризует репродуктивные свойства популяции, а интеграл

$$R = \int_{0}^{+\infty} K(\tau) \, d\tau$$

называют репродуктивным числом популяции.

Литература

1. Динамическая теория биологических популяций / Под ред. Полуэктова Р. А. – М.: Наука, 1974.