Фрагмент лекции на тему: «Дискретные динамические системы на плоскости»

1. Основные понятия и критерий локальной устойчивости

Рассмотрим сообщество двух взаимодействующих популяций различных видов, имеющих одинаковый характерный период жизнедеятельности. Будем рассматривать экосистему в моменты времени, кратные указанному периоду, а численности популяций в t-й момент времени обозначать соответственно x_t и y_t .

Будем считать, что приспособленности видов $\frac{x_{t+1}}{x_t}$, $\frac{y_{t+1}}{y_t}$ зависят только от численностей в *t*-й момент времени, т. е. другие условия существования неизменны или их колебания несущественно влияют на приспособленность. Тогда связь между численностями популяций в смежные моменты времени описывается следующей дискретной динамической системой:

$$\begin{cases} x_{t+1} = x_t f(x_t, y_t), \\ y_{t+1} = y_t g(x_t, y_t). \end{cases}$$
(1.1)

По смыслу функции f и g – положительные неотрицательных аргументов. Будем предполагать, что они непрерывно дифференцируемы.

В зависимости от характера связи видов функци
иfиgобладают следующими свойствами:

Вид связи	Свойства функций
Конкуренция	f(x,y) и $g(x,y)$ убывают по обоим аргументам,
	$f(0,0) > 1, \ g(0,0) > 1$
Хищничество,	f(x,y) убывает по обоим аргументам,
паразитизм	g(x, y) возрастает по x и убывает по y ,
	$f(0,0) > 1, \ g(0,0) \le 1.$
	Предполагается, что x_t – численность жертвы
	(хозяина), y_t – численность хищника (паразита)

Решение системы (1.1) вида $(x_t, y_t) = (x^*, y^*) \quad \forall t \ge 0$ называют стационарным, а точку (x^*, y^*) – положением равновесия. Очевидно, что все положения равновесия (стационарные точки) системы (1.1) определяются условиями

$$\begin{cases} x = x \cdot f(x, y), \\ y = y \cdot g(x, y). \end{cases}$$
(1.2)

Построив в окрестности произвольного положения равновесия $P^* = (x^*, y^*)$ соответствующую (1.1) линеаризованную систему

$$\begin{cases} \xi_{t+1} = (f(P^*) + x^* f'_x(P^*))\xi_t + x^* f'_y(P^*)\eta_t, \\ \eta_{t+1} = y^* g'_x(P^*)\xi_t + (g(P^*) + y^* g'_y(P^*))\eta_t, \end{cases}$$
(1.3)

можно выяснить характер устойчивости положения равновесия с помощью теоремы [1].

Теорема 2.1. 1. Если все собственные значения матрицы A системы (1.3)

$$A = \left(\begin{array}{cc} f(P^*) + x^* f'_x(P^*) & x^* f'_y(P^*) \\ y^* g'_x(P^*) & g(P^*) + y^* g'_y(P^*) \end{array} \right)$$

по модулю меньше 1, то положение равновесия P^* системы (1.1) асимптотически устойчиво.

2. Если хотя бы одно собственное значение матрицы A по модулю больше 1, то положение равновесия P^* системы (1.1) неустойчиво.

2. Экспоненциальная модель системы «хищник-жертва»

2.1 Описание модели

Рассмотрим динамическую систему, описывающую развитие сообщества двух видов – жертвы и хищника [2]:

$$\begin{cases} X_{t+1} = A \cdot X_t \cdot e^{-\alpha X_t - \beta Y_t}, \\ Y_{t+1} = B \cdot Y_t \cdot e^{\gamma X_t - \delta Y_t}, \\ t = 0, 1, 2, \dots \end{cases}$$
(2.1)

Здесь X_t – численность популяции жертвы; Y_t – численность популяции хищника; A, B – постоянные коэффициенты прироста без учета взаимодействия видов, причем A > 1 и 0 < B < 1. Параметры модели α , β , γ , δ , учитывающие взаимодействие двух видов, являются положительными константами. Уменьшим размерность области параметров, выполнив замену:

$$X_t = \frac{1}{lpha} x_t, \quad Y_t = \frac{1}{\delta} y_t.$$

При этом система (2.1) примет вид

$$\begin{cases} x_{t+1} = A \cdot x_t \cdot e^{-x_t - by_t}, \\ y_{t+1} = B \cdot y_t \cdot e^{ax_t - y_t}, \\ t = 0, 1, 2, ..., \end{cases}$$
(2.2)

где $a = \frac{\gamma}{\alpha}, \quad b = \frac{\beta}{\delta}$. Допустимые значения параметров модели описывают условия:

 $A > 1, \quad 0 < B < 1, \quad a > 0, \quad b > 0.$ (2.3)

2.2 Существование и устойчивость положений рановесия

Найдем положения равновесия системы (2.1), решая систему уравнений:

$$\begin{cases} x = Axe^{-x-by}, \\ y = Bye^{ax-y}, \end{cases} \Leftrightarrow \begin{cases} x(1 - A \cdot e^{-x-by}) = 0, \\ y(1 - B \cdot e^{ax-y}) = 0. \end{cases}$$
(2.4)

Очевидно, решения системы (2.4)

$$x = 0, y = 0$$
 и $x = \ln A, y = 0$

удовлетворяют условию неотрицательности и, следовательно, определяют положения равновесия $P_0(0;0)$ и $P_1(\ln A;0)$ системы (2.2). Решение $x = 0, y = \ln B$ системы (2.4) не является положением равновесия, так как при 0 < B < 1 имеем $\ln B < 0$. Еще одно решение системы (2.4)

$$x^* = \frac{\ln A - b \ln B}{\Delta}, \quad y^* = \frac{a \ln A + \ln B}{\Delta}, \quad \text{rge } \Delta = 1 + ab,$$

определяет положение равновесия $P_2(x^*;y^*)$, которое имеет смысл, если

$$a\ln A + \ln B \ge 0$$

Заметим, что если $a \ln A + \ln B = 0$, то точки P_1 и P_2 совпадают. Вывод 1. Система (2.2) имеет два положения равновесия P_0 и P_1 , если $a \ln A + \ln B \leq 0$, иначе – три: P_0 , P_1 , P_2 . Условие

$$a\ln A + \ln B > 0 \tag{2.5}$$

- условие существования точки P₂.

Чтобы выяснить характер устойчивости найденных положений равновесия, для системы (2.2) в окрестности произвольного положения равновесия $P(x^*; y^*)$ построим соответствующую линеаризованную систему:

$$\begin{cases} \xi_{t+1} = A(1-x^*)e^{-x^*-by^*}\xi_t - Abx^*e^{-x^*-by^*}\eta_t, \\ \eta_{t+1} = Bay^*e^{ax^*-y^*}\xi_t + B(1-y^*)e^{ax^*-y^*}\eta_t. \end{cases}$$
(2.6)

Для точки P_0 система (2.6) принимает вид

$$\begin{cases} \xi_{t+1} = A\xi_t, \\ \eta_{t+1} = B\eta_t. \end{cases}$$

Для собственных значений матрицы системы имеем

$$\lambda_1 = A > 1, \quad \lambda_2 = B < 1.$$

Следовательно, положение равновесия P_0 неустойчиво при любых допустимых значений параметров системы (2.2).

Для точки P₁ система (2.6) принимает вид

$$\begin{cases} \xi_{t+1} = (1 - \ln A)\xi_t - (b\ln A)\eta_t, \\ \eta_{t+1} = B \cdot A^a \eta_t. \end{cases}$$

Собственные значения матрицы системы равны

$$\lambda_1 = 1 - \ln A, \quad \lambda_2 = B \cdot A^a.$$

Положение равновесия P_1 будет асимптотически устойчиво, если параметры A, B и a удовлетворяют условиям

$$\begin{cases} |1 - \ln A| < 1, \\ B \cdot A^a < 1, \end{cases} \Leftrightarrow \begin{cases} 1 < A < e^2, \\ \ln B + a \ln A < 0. \end{cases}$$
(2.7)

Заметим, что если положение равновесия асимптотически устойчиво, то нарушается условие существования (2.5) для точки P_2 .

Для точки P2 система (2.6) принимает вид

$$\begin{cases} \xi_{t+1} = (1-x^*)\xi_t - by^*\eta_t, \\ \eta_{t+1} = ay^*\xi_t + (1-y^*)\eta_t. \end{cases}$$

Собственные значения матрицы системы будут корнями уравнения

$$\lambda^{2} - (2 - x^{*} - y^{*})\lambda + 1 - x^{*} - y^{*} + \Delta x^{*}y^{*} = 0.$$

Положение равновесия P_2 будет асимптотически устойчивым, если его координаты удовлетворяют условиям

$$\begin{cases} \Delta y^* x^* - x^* - y^* < 0, \\ 4 - 2(x^* + y^*) + \Delta x^* y^* > 0. \end{cases}$$
(2.8)

На плоскости Ox^*y можно построить решение системы неравенств (2.8), которое определяет область устойчивости ненулевого положения равновесия P_2 (рис. 2.1).

Рис. 2.1. Область устойчивости положения равновесия Р2

Вывод 2. Если параметры системы (2.2) удовлетворяют условию (2.7), то она имеет два положения равновесия P_0 и P_1 , из которых второе асимптотически устойчиво (аттрактор). Если выполнено условие (2.5), то система (2.2) имеет три положения равновесия P_0 , P_1 , P_2 , из которых P_2 является асимпотически устойчивым, если только его координаты удовлетворяют условиям (2.8).

2.3 Динамика численности «жертвы» в отсутствие «хищника»

В отсутствие «хищника» (
 $y_t=0 \; \forall \; t \geq 0$) динамика численности «жертвы» описывается моделью Риккера

$$x_{t+1} = A \cdot x_t e^{-x_t}, \quad t = 0, 1, 2, \dots$$
(2.10)

При этом существуют два положения равновесия $P_0(0)$ и $P_1(\ln A)$. Если $1 < A < e^2$, то точка P_1 является аттрактором. То есть при любой ненулевой начальной численности «жертвы» будет наблюдаться стабилизация ее численности на равновесном уровне $\ln A$ (рис. 2.2a).

Если $e^2 < A \le e^{\varepsilon^*}$, где $\varepsilon^* \approx 2,526$, в системе есть притягивающий цикл длины 2. То есть при любой начальной численности «жертвы», отличной от равновесной $\ln A$, с теченем времени будет устанавливаться режим периодических колебаний численности с шагом по времени, равным 2 (рис. 2.26).

Если $A > e^{\varepsilon^*}$, то среди решений уравнения (2.10) есть цикл длины 4, для которого существует критическое значение A^* параметра A, такое, что при $A < A^*$ цикл будет устойчивым. А значит, возможны периодические колебания численности «жертвы» с шагом по времени, равным 4 (рис. 2.2в).

При дальнейшем возрастании значений параметра A встречаются устойчивые циклы длиной 8, 16, ..., 2^k (k – любое натуральное число), трехточечные циклы, а значит, согласно теореме 1.3, циклы любой длины и «хаотические» траектории (рис. 2.2г).

На рис. 2.3 приведены бифуркационные диаграммы, которые демонстрируют, как с изменением параметра A (горизонтальная ось диаграммы) происходят качественные изменения в динамике популяции «жертвы». На диаграммах четко видны области значений параметра A, когда аттрактором является трехточечный цикл и когда происходит бифуркация с удвоением длины цикла. На нижней диаграмме (рис. 2.3) можно видеть, как с ростом A уменьшается ширина области существования трехточечного цикла.

Рис. 2.2. Динамика численности «жертвы» в отсутствие «хищника»: а) A = 5, 8; б) A = 8, 3; в) A = 14; г) A = 20

Puc. 2.3. Бифуркационная диаграмма динамики численности «жертвы» в отсутствие «хищника»

2.4 Результаты численных экспериментов с моделью (2.2)

Эксперимент 1. На рис. 2.4 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.4а) и «хищника» (рис. 2.4б) при изменении начальной численности «жертвы». Диаграммы построены при следующих значениях параметров модели и начальной численности «хищника»:

A = 15; B = 0,7; a = 0,6; b = 0,8; $y_0 = 8.$

При этом асимптотически устойчивым является положение равновесия $P_2(2,023;0,857)$. На приведенных диаграммах видно, что можно выделить области значений начальной численности «жертвы», когда аттрактором является либо неподвижная точка P_2 (например, см. траектории на рис. 2.4в, построенные при $x_0 = 1$), либо трехточечный цикл (например, см. траектории на рис. 2.4г, построенные при $x_0 = 3$).

Эксперимент 2. На рис. 2.5 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.5а) и «хищника» (рис. 2.5б) при изменении начальной численности «хищника». Диаграммы построены при следующих значениях параметров модели и начальной численности «жертвы»:

$$A = 15;$$
 $B = 0,7;$ $a = 0,6;$ $b = 0,8;$ $x_0 = 3.$

На приведенных диаграммах видно, что можно выделить области значений начальной численности «хищника», когда аттрактором является либо неподвижная точка $P_2(2,023;0,857)$ (например, см. траектории на рис. 2.5г, построенные при $y_0 = 5$), либо трехточечный цикл (например, см. траектории на рис. 2.5в, построенные при $y_0 = 2$).

Эксперимент 3. На рис. 2.6 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.6а) и «хищника» (рис. 2.6б) при изменении параметра А. Диаграммы построены при следующих значениях параметров модели и начальных численностей «жертвы» и «хищника»:

$$B = 0,5;$$
 $a = 0,4;$ $b = 0,6;$ $x_0 = 3;$ $y_0 = 2.$

Сравнивая две диаграммы, можно сделать вывод, что с ростом значений параметра *А* происходят одинаковые типы бифуркаций в динамике обоих видов.

Эксперимент 4. На рис. 2.7 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.7а) и «хищника» (рис. 2.7б) при изменении параметра *В*. Диаграммы

Puc. 2.4. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении начальной численности «жертвы». Примеры траекторий

Рис. 2.5. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении начальной численности «хищника». Примеры траекторий

Рис. 2.6. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении параметра *А*

построены при следующих значениях параметров модели и начальных численностей «жертвы» и «хищника»:

$$A = 16; \quad a = 0, 4; \quad b = 0, 6; \quad x_0 = 4; \quad y_0 = 2.$$

Эксперимент 5. На рис. 2.8 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.8а) и «хищника» (рис. 2.8б) при изменении параметра *b*. Диаграммы построены при следующих значениях параметров модели и начальных численностей «жертвы» и «хищника»:

$$A = 16;$$
 $B = 0, 8;$ $a = 0, 4;$ $x_0 = 4;$ $y_0 = 2.$

Эксперимент 6. На рис. 2.9 представлены бифуркационные диаграммы, которые дают информацию о динамике «жертвы» (рис. 2.9а) и «хищника» (рис. 2.9б) при изменении параметра *а*. Диаграммы построены при следующих значениях параметров модели и начальных численностей «жертвы» и «хищника»:

$$A = 19; \quad B = 0, 5; \quad b = 0, 6; \quad x_0 = 4; \quad y_0 = 2$$

Рис. 2.7. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении параметра *В*

Puc. 2.8. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении параметра *b*

Рис. 2.9. Бифуркационные диаграммы динамики численности «жертвы» и «хищника» при изменении параметра *а*

Литература

- 1. Романко В. К. Курс разностных уравнений. М.: ФИЗМАТЛИТ, 2012. 200 с.
- 2. Шапиро А. П., Луппов С. П. Рекуррентные уравнения в теории популяционной биологии. М.: Наука, 1983. 133 с.

14